|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import multiprocessing as mp |
|
from itertools import repeat |
|
from pathlib import Path |
|
|
|
import librosa |
|
from tqdm import tqdm |
|
|
|
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest, write_manifest |
|
from nemo.collections.asr.parts.utils.vad_utils import get_frame_labels, load_speech_segments_from_rttm |
|
|
|
""" |
|
This script generates a manifest file for synthetic data generated using the NeMo multispeaker speech data simulator. |
|
The audio created from the simulator can be used to train a VAD model using the manifest file contains the following fields: |
|
The manifest file contains the following fields: |
|
|
|
audio_filepath (str): Path to audio file. |
|
offset (float): Offset in seconds for the start of the audio file. |
|
duration (float): Duration in seconds for the audio file. |
|
text (str): Transcription of the audio file. |
|
label (list): List of frame labels for the audio file. |
|
orig_sample_rate (int): Original sample rate of the audio file. |
|
vad_frame_unit_secs (float): Duration in seconds for each frame label. |
|
|
|
Usage: |
|
python build_synthetic_vad_manifest.py \ |
|
--input_dir /path/to/synthetic/data \ |
|
--frame_length 0.04 \ |
|
--output_file /path/to/output/manifest.json |
|
""" |
|
|
|
|
|
def generate_manifest_entry(inputs): |
|
""" |
|
Generates a manifest entry for a single audio file. |
|
This function is parallelized using multiprocessing.Pool. |
|
|
|
Args: |
|
inputs (tuple): Tuple containing audio file path and frame length in seconds. |
|
inputs[0]: |
|
audio_filepath (str): Path to audio file. |
|
inputs[1]: |
|
vad_frame_unit_secs (float): Duration in seconds for each frame label. |
|
|
|
Returns: |
|
entry (dict): Dictionary containing manifest entry. |
|
""" |
|
audio_filepath, vad_frame_unit_secs = inputs |
|
audio_filepath = Path(audio_filepath) |
|
y, sr = librosa.load(str(audio_filepath)) |
|
dur = librosa.get_duration(y=y, sr=sr) |
|
|
|
manifest_path = audio_filepath.parent / Path(f"{audio_filepath.stem}.json") |
|
audio_manifest = read_manifest(manifest_path) |
|
text = " ".join([x["text"] for x in audio_manifest]) |
|
|
|
rttm_path = audio_filepath.parent / Path(f"{audio_filepath.stem}.rttm") |
|
segments = load_speech_segments_from_rttm(rttm_path) |
|
labels = get_frame_labels(segments, vad_frame_unit_secs, 0.0, dur) |
|
|
|
entry = { |
|
"audio_filepath": str(audio_filepath.absolute()), |
|
"offset": 0.0, |
|
"duration": dur, |
|
"text": text, |
|
"label": labels, |
|
"orig_sample_rate": sr, |
|
"vad_frame_unit_secs": vad_frame_unit_secs, |
|
} |
|
return entry |
|
|
|
|
|
def main(args): |
|
wav_list = list(Path(args.input_dir).glob("*.wav")) |
|
print(f"Found {len(wav_list)} in directory: {args.input_dir}") |
|
|
|
inputs = zip(wav_list, repeat(args.frame_length)) |
|
with mp.Pool(processes=mp.cpu_count()) as pool: |
|
manifest_data = list(tqdm(pool.imap(generate_manifest_entry, inputs), total=len(wav_list))) |
|
|
|
write_manifest(args.output_file, manifest_data) |
|
print(f"Manifest saved to: {args.output_file}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("input_dir", default=None, help="Path to directory containing synthetic data") |
|
parser.add_argument( |
|
"-l", "--frame_length", default=0.04, type=float, help="Duration in seconds for each frame label" |
|
) |
|
parser.add_argument("-o", "--output_file", default=None, help="Path to output manifest file") |
|
|
|
args = parser.parse_args() |
|
main(args) |
|
|