CRYSTAL-R1 / SoundScribe /SpeakerID /scripts /speaker_tasks /create_synth_vad_manifest.py
crystal-technologies's picture
Upload 1287 files
2d8da09
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import multiprocessing as mp
from itertools import repeat
from pathlib import Path
import librosa
from tqdm import tqdm
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest, write_manifest
from nemo.collections.asr.parts.utils.vad_utils import get_frame_labels, load_speech_segments_from_rttm
"""
This script generates a manifest file for synthetic data generated using the NeMo multispeaker speech data simulator.
The audio created from the simulator can be used to train a VAD model using the manifest file contains the following fields:
The manifest file contains the following fields:
audio_filepath (str): Path to audio file.
offset (float): Offset in seconds for the start of the audio file.
duration (float): Duration in seconds for the audio file.
text (str): Transcription of the audio file.
label (list): List of frame labels for the audio file.
orig_sample_rate (int): Original sample rate of the audio file.
vad_frame_unit_secs (float): Duration in seconds for each frame label.
Usage:
python build_synthetic_vad_manifest.py \
--input_dir /path/to/synthetic/data \
--frame_length 0.04 \
--output_file /path/to/output/manifest.json
"""
def generate_manifest_entry(inputs):
"""
Generates a manifest entry for a single audio file.
This function is parallelized using multiprocessing.Pool.
Args:
inputs (tuple): Tuple containing audio file path and frame length in seconds.
inputs[0]:
audio_filepath (str): Path to audio file.
inputs[1]:
vad_frame_unit_secs (float): Duration in seconds for each frame label.
Returns:
entry (dict): Dictionary containing manifest entry.
"""
audio_filepath, vad_frame_unit_secs = inputs
audio_filepath = Path(audio_filepath)
y, sr = librosa.load(str(audio_filepath))
dur = librosa.get_duration(y=y, sr=sr)
manifest_path = audio_filepath.parent / Path(f"{audio_filepath.stem}.json")
audio_manifest = read_manifest(manifest_path)
text = " ".join([x["text"] for x in audio_manifest])
rttm_path = audio_filepath.parent / Path(f"{audio_filepath.stem}.rttm")
segments = load_speech_segments_from_rttm(rttm_path)
labels = get_frame_labels(segments, vad_frame_unit_secs, 0.0, dur)
entry = {
"audio_filepath": str(audio_filepath.absolute()),
"offset": 0.0,
"duration": dur,
"text": text,
"label": labels,
"orig_sample_rate": sr,
"vad_frame_unit_secs": vad_frame_unit_secs,
}
return entry
def main(args):
wav_list = list(Path(args.input_dir).glob("*.wav"))
print(f"Found {len(wav_list)} in directory: {args.input_dir}")
inputs = zip(wav_list, repeat(args.frame_length))
with mp.Pool(processes=mp.cpu_count()) as pool:
manifest_data = list(tqdm(pool.imap(generate_manifest_entry, inputs), total=len(wav_list)))
write_manifest(args.output_file, manifest_data)
print(f"Manifest saved to: {args.output_file}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("input_dir", default=None, help="Path to directory containing synthetic data")
parser.add_argument(
"-l", "--frame_length", default=0.04, type=float, help="Duration in seconds for each frame label"
)
parser.add_argument("-o", "--output_file", default=None, help="Path to output manifest file")
args = parser.parse_args()
main(args)