crystal-technologies's picture
Upload 1287 files
2d8da09
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
from glob import glob
from typing import List, Optional
import regex
from joblib import Parallel, delayed
from normalization_helpers import LATIN_TO_RU, RU_ABBREVIATIONS
from num2words import num2words
from sox import Transformer
from tqdm import tqdm
from nemo.collections.asr.models import ASRModel
from nemo.utils import model_utils
try:
from nemo_text_processing.text_normalization.normalize import Normalizer
NEMO_NORMALIZATION_AVAILABLE = True
except (ModuleNotFoundError, ImportError):
NEMO_NORMALIZATION_AVAILABLE = False
parser = argparse.ArgumentParser(description="Prepares text and audio files for segmentation")
parser.add_argument("--in_text", type=str, default=None, help="Path to a text file or a directory with .txt files")
parser.add_argument("--output_dir", type=str, required=True, help="Path to output directory")
parser.add_argument("--audio_dir", type=str, help="Path to folder with .mp3 or .wav audio files")
parser.add_argument("--sample_rate", type=int, default=16000, help="Sampling rate used during ASR model training, Hz")
parser.add_argument("--bit_depth", type=int, default=16, help="Bit depth to use for processed audio files")
parser.add_argument("--n_jobs", default=-2, type=int, help="The maximum number of concurrently running jobs")
parser.add_argument(
"--language",
type=str,
default="en",
choices=["en", "ru", "de", "es", 'other'],
help='Add target language based on the num2words list of supported languages',
)
parser.add_argument(
"--cut_prefix", type=int, default=0, help="Number of seconds to cut from the beginning of the audio files.",
)
parser.add_argument(
"--model", type=str, default="QuartzNet15x5Base-En", help="Pre-trained model name or path to model checkpoint"
)
parser.add_argument(
"--max_length", type=int, default=40, help="Max number of words of the text segment for alignment."
)
parser.add_argument(
"--additional_split_symbols",
type=str,
default="",
help="Additional symbols to use for \
sentence split if eos sentence split resulted in sequence longer than --max_length. "
"Use '|' as a separator between symbols, for example: ';|:'. Use '\s' to split by space.",
)
parser.add_argument(
"--use_nemo_normalization",
action="store_true",
help="Set to True to use NeMo Normalization tool to convert numbers from written to spoken format.",
)
parser.add_argument(
"--batch_size", type=int, default=100, help="Batch size for NeMo Normalization tool.",
)
def process_audio(
in_file: str, wav_file: str = None, cut_prefix: int = 0, sample_rate: int = 16000, bit_depth: int = 16
):
"""Process audio file: .mp3 to .wav conversion and cut a few seconds from the beginning of the audio
Args:
in_file: path to the .mp3 or .wav file for processing
wav_file: path to the output .wav file
cut_prefix: number of seconds to cut from the beginning of the audio file
sample_rate: target sampling rate
bit_depth: target bit_depth
"""
try:
if not os.path.exists(in_file):
raise ValueError(f'{in_file} not found')
tfm = Transformer()
tfm.convert(samplerate=sample_rate, n_channels=1, bitdepth=bit_depth)
tfm.trim(cut_prefix)
tfm.build(input_filepath=in_file, output_filepath=wav_file)
except Exception as e:
print(f'{in_file} skipped - {e}')
def split_text(
in_file: str,
out_file: str,
vocabulary: List[str],
language="en",
remove_brackets: bool = True,
do_lower_case: bool = True,
max_length: bool = 100,
additional_split_symbols: bool = None,
use_nemo_normalization: bool = False,
n_jobs: Optional[int] = 1,
batch_size: Optional[int] = 1.0,
):
"""
Breaks down the in_file roughly into sentences. Each sentence will be on a separate line.
Written form of the numbers will be converted to its spoken equivalent, OOV punctuation will be removed.
Args:
in_file: path to original transcript
out_file: path to the output file
vocabulary: ASR model vocabulary
language: text language
remove_brackets: Set to True if square [] and curly {} brackets should be removed from text.
Text in square/curly brackets often contains inaudible fragments like notes or translations
do_lower_case: flag that determines whether to apply lower case to the in_file text
max_length: Max number of words of the text segment for alignment
additional_split_symbols: Additional symbols to use for sentence split if eos sentence split resulted in
segments longer than --max_length
use_nemo_normalization: Set to True to use NeMo normalization tool to convert numbers from written to spoken
format. Normalization using num2words will be applied afterwards to make sure there are no numbers present
in the text, otherwise they will be replaced with a space and that could deteriorate segmentation results.
n_jobs (if use_nemo_normalization=True): the maximum number of concurrently running jobs. If -1 all CPUs are used. If 1 is given,
no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.
batch_size (if use_nemo_normalization=True): Number of examples for each process
"""
print(f"Splitting text in {in_file} into sentences.")
with open(in_file, "r") as f:
transcript = f.read()
# remove some symbols for better split into sentences
transcript = (
transcript.replace("\n", " ")
.replace("\t", " ")
.replace("…", "...")
.replace("\\", " ")
.replace("--", " -- ")
.replace(". . .", "...")
)
# end of quoted speech - to be able to split sentences by full stop
transcript = re.sub(r"([\.\?\!])([\"\'”])", r"\g<2>\g<1> ", transcript)
# remove extra space
transcript = re.sub(r" +", " ", transcript)
if remove_brackets:
transcript = re.sub(r'(\[.*?\])', ' ', transcript)
# remove text in curly brackets
transcript = re.sub(r'(\{.*?\})', ' ', transcript)
lower_case_unicode = ''
upper_case_unicode = ''
if language == "ru":
lower_case_unicode = '\u0430-\u04FF'
upper_case_unicode = '\u0410-\u042F'
elif language not in ["ru", "en"]:
print(f"Consider using {language} unicode letters for better sentence split.")
# remove space in the middle of the lower case abbreviation to avoid splitting into separate sentences
matches = re.findall(r'[a-z' + lower_case_unicode + ']\.\s[a-z' + lower_case_unicode + ']\.', transcript)
for match in matches:
transcript = transcript.replace(match, match.replace('. ', '.'))
# find phrases in quotes
with_quotes = re.finditer(r'“[A-Za-z ?]+.*?”', transcript)
sentences = []
last_idx = 0
for m in with_quotes:
match = m.group()
match_idx = m.start()
if last_idx < match_idx:
sentences.append(transcript[last_idx:match_idx])
sentences.append(match)
last_idx = m.end()
sentences.append(transcript[last_idx:])
sentences = [s.strip() for s in sentences if s.strip()]
# Read and split transcript by utterance (roughly, sentences)
split_pattern = f"(?<!\w\.\w.)(?<![A-Z{upper_case_unicode}][a-z{lower_case_unicode}]\.)(?<![A-Z{upper_case_unicode}]\.)(?<=\.|\?|\!|\.”|\?”\!”)\s"
new_sentences = []
for sent in sentences:
new_sentences.extend(regex.split(split_pattern, sent))
sentences = [s.strip() for s in new_sentences if s.strip()]
def additional_split(sentences, split_on_symbols):
if len(split_on_symbols) == 0:
return sentences
split_on_symbols = split_on_symbols.split("|")
def _split(sentences, delimiter):
result = []
for sent in sentences:
split_sent = sent.split(delimiter)
# keep the delimiter
split_sent = [(s + delimiter).strip() for s in split_sent[:-1]] + [split_sent[-1]]
if "," in delimiter:
# split based on comma usually results in too short utterance, combine sentences
# that result in a single word split. It's usually not recommended to do that for other delimiters.
comb = []
for s in split_sent:
MIN_LEN = 2
# if the previous sentence is too short, combine it with the current sentence
if len(comb) > 0 and (len(comb[-1].split()) <= MIN_LEN or len(s.split()) <= MIN_LEN):
comb[-1] = comb[-1] + " " + s
else:
comb.append(s)
result.extend(comb)
else:
result.extend(split_sent)
return result
another_sent_split = []
for sent in sentences:
split_sent = [sent]
for delimiter in split_on_symbols:
if len(delimiter) == 0:
continue
split_sent = _split(split_sent, delimiter + " " if delimiter != " " else delimiter)
another_sent_split.extend(split_sent)
sentences = [s.strip() for s in another_sent_split if s.strip()]
return sentences
additional_split_symbols = additional_split_symbols.replace("/s", " ")
sentences = additional_split(sentences, additional_split_symbols)
vocabulary_symbols = []
for x in vocabulary:
if x != "<unk>":
# for BPE models
vocabulary_symbols.extend([x for x in x.replace("##", "").replace("▁", "")])
vocabulary_symbols = list(set(vocabulary_symbols))
vocabulary_symbols += [x.upper() for x in vocabulary_symbols]
# check to make sure there will be no utterances for segmentation with only OOV symbols
vocab_no_space_with_digits = set(vocabulary_symbols + [str(i) for i in range(10)])
if " " in vocab_no_space_with_digits:
vocab_no_space_with_digits.remove(" ")
sentences = [
s.strip() for s in sentences if len(vocab_no_space_with_digits.intersection(set(s.lower()))) > 0 and s.strip()
]
# when no punctuation marks present in the input text, split based on max_length
if len(sentences) == 1:
sent = sentences[0].split()
sentences = []
for i in range(0, len(sent), max_length):
sentences.append(" ".join(sent[i : i + max_length]))
sentences = [s.strip() for s in sentences if s.strip()]
# save split text with original punctuation and case
out_dir, out_file_name = os.path.split(out_file)
with open(os.path.join(out_dir, out_file_name[:-4] + "_with_punct.txt"), "w") as f:
f.write(re.sub(r' +', ' ', "\n".join(sentences)))
# substitute common abbreviations before applying lower case
if language == "ru":
for k, v in RU_ABBREVIATIONS.items():
sentences = [s.replace(k, v) for s in sentences]
# replace Latin characters with Russian
for k, v in LATIN_TO_RU.items():
sentences = [s.replace(k, v) for s in sentences]
if language == "en" and use_nemo_normalization:
if not NEMO_NORMALIZATION_AVAILABLE:
raise ValueError("NeMo normalization tool is not installed.")
print("Using NeMo normalization tool...")
normalizer = Normalizer(input_case="cased", cache_dir=os.path.join(os.path.dirname(out_file), "en_grammars"))
sentences_norm = normalizer.normalize_list(
sentences, verbose=False, punct_post_process=True, n_jobs=n_jobs, batch_size=batch_size
)
if len(sentences_norm) != len(sentences):
raise ValueError("Normalization failed, number of sentences does not match.")
else:
sentences = sentences_norm
sentences = '\n'.join(sentences)
# replace numbers with num2words
try:
p = re.compile("\d+")
new_text = ""
match_end = 0
for i, m in enumerate(p.finditer(sentences)):
match = m.group()
match_start = m.start()
if i == 0:
new_text = sentences[:match_start]
else:
new_text += sentences[match_end:match_start]
match_end = m.end()
new_text += sentences[match_start:match_end].replace(match, num2words(match, lang=language))
new_text += sentences[match_end:]
sentences = new_text
except NotImplementedError:
print(
f"{language} might be missing in 'num2words' package. Add required language to the choices for the"
f"--language argument."
)
raise
sentences = re.sub(r' +', ' ', sentences)
with open(os.path.join(out_dir, out_file_name[:-4] + "_with_punct_normalized.txt"), "w") as f:
f.write(sentences)
if do_lower_case:
sentences = sentences.lower()
symbols_to_remove = ''.join(set(sentences).difference(set(vocabulary_symbols + ["\n", " "])))
sentences = sentences.translate(''.maketrans(symbols_to_remove, len(symbols_to_remove) * " "))
# remove extra space
sentences = re.sub(r' +', ' ', sentences)
with open(out_file, "w") as f:
f.write(sentences)
if __name__ == "__main__":
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
text_files = []
if args.in_text:
if args.model is None:
raise ValueError(f"ASR model must be provided to extract vocabulary for text processing")
elif os.path.exists(args.model):
model_cfg = ASRModel.restore_from(restore_path=args.model, return_config=True)
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel
print(f"Restoring model : {imported_class.__name__}")
asr_model = imported_class.restore_from(restore_path=args.model) # type: ASRModel
model_name = os.path.splitext(os.path.basename(args.model))[0]
else:
# restore model by name
asr_model = ASRModel.from_pretrained(model_name=args.model) # type: ASRModel
model_name = args.model
vocabulary = asr_model.cfg.decoder.vocabulary
if os.path.isdir(args.in_text):
text_files = glob(f"{args.in_text}/*.txt")
else:
text_files.append(args.in_text)
for text in text_files:
base_name = os.path.basename(text)[:-4]
out_text_file = os.path.join(args.output_dir, base_name + ".txt")
split_text(
text,
out_text_file,
vocabulary=vocabulary,
language=args.language,
max_length=args.max_length,
additional_split_symbols=args.additional_split_symbols,
use_nemo_normalization=args.use_nemo_normalization,
n_jobs=args.n_jobs,
batch_size=args.batch_size,
)
print(f"Processed text saved at {args.output_dir}")
if args.audio_dir:
if not os.path.exists(args.audio_dir):
raise ValueError(f"{args.audio_dir} not found. '--audio_dir' should contain .mp3 or .wav files.")
audio_paths = glob(f"{args.audio_dir}/*")
Parallel(n_jobs=args.n_jobs)(
delayed(process_audio)(
audio_paths[i],
os.path.join(args.output_dir, os.path.splitext(os.path.basename(audio_paths[i]))[0] + ".wav"),
args.cut_prefix,
args.sample_rate,
args.bit_depth,
)
for i in tqdm(range(len(audio_paths)))
)
print("Data preparation is complete.")