# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Aggregate ICL evals into composite scores.""" import logging import math from enum import Enum from typing import Dict, Optional from composer.core import Callback, State from composer.loggers import Logger __all__ = ['EvalGauntlet'] log = logging.getLogger(__name__) class Weighting(Enum): EQUAL = 1 SAMPLE_SZ = 2 LOG_SAMPLE_SZ = 3 class EvalGauntlet(Callback): """The EvalGauntlet aggregates ICL eval results. After `eval_end`, this callback inspects the logger for different ICL metrics and aggregates the scores according to the aggregation specification provided in the constructor. Args: logger_keys (list): These are the exact keys that the individual benchmark metrics will be logged under in the logger after eval tasks (dict): This contains the list of categories, as well as the subtasks within them, the random baseline accuracy of each subtask, and the number of fewshot examples used for the task. See `llmfoundry/scripts/eval/yamls/eval_gauntlet.yaml` to see the structure. weighting (Weighting): The weighting scheme used to balance different tasks within each category. Either assign them all equal weight, assign them weight proportional to the dataset size, or assign them weight proportional to the log2 of the dataset size. Options are 'EQUAL', 'SAMPLE_SZ', and 'LOG_SAMPLE_SZ'. subtract_random_baseline (bool): Flag determining whether to subtract random baseline accuracy from the performance on each individual benchmark before aggregating. rescale_accuracy (bool): Flag determining whether to rescale the accuracy on each benchmark by (1-random_baseline_accuracy) before aggregating. Using this ensures that all benchmarks max out at 1.0. benchmark_sizes (Optional[dict]): Optional data on benchmark sizes, used when not relying on equal weighting. """ def __init__(self, logger_keys: list, categories: dict, weighting: str = 'EQUAL', subtract_random_baseline: bool = True, rescale_accuracy: bool = True, benchmark_sizes: Optional[dict] = None): if isinstance(logger_keys, dict): raise ValueError( 'logger_keys now requires a list type as input, not a dict') if weighting != Weighting.EQUAL and benchmark_sizes is None: raise Exception( 'When not using equal weighting, you must provide the benchmark sizes.' ) if rescale_accuracy and not subtract_random_baseline: raise Exception( 'Only use accuracy rescaling in conjunction with subtracting random baseline accuracy.' ) self.categories = categories self.weighting = Weighting[weighting] self.subtract_random_baseline = subtract_random_baseline self.rescale_accuracy = rescale_accuracy self.logger_keys = logger_keys for category in self.categories: for benchmark in category['benchmarks']: bench_name = f"{benchmark['name']}/{benchmark['num_fewshot']}-shot" if self.weighting != Weighting.EQUAL: assert benchmark_sizes is not None cumulative_samples = max( sum(count for name, count in benchmark_sizes.items() if name.startswith(bench_name)), 1) else: cumulative_samples = -1 # pyright weight = None if self.weighting == Weighting.EQUAL: weight = 1 elif self.weighting == Weighting.SAMPLE_SZ: weight = cumulative_samples elif self.weighting == Weighting.LOG_SAMPLE_SZ: weight = max(math.log(cumulative_samples, 2), 1) assert weight is not None benchmark['weighting'] = weight def compute_averages(self, state: State) -> Dict[str, float]: results = {} for key in self.logger_keys: # starting at index 1 skips the "metric" part of the key which is superfluous dl_name, metric_name = key.split('/')[1:-1], key.split('/')[-1] if 'Accuracy' not in metric_name: continue metric = state.eval_metrics.get('/'.join(dl_name), {}).get(metric_name, None) if metric is None: continue val = metric.compute().item() # ending at index 2 allows us to aggregate over dataloaders w/ subcategories key = '/'.join(dl_name[0:2]) if key not in results: results[key] = [] results[key].append(val) return {k: sum(v) / len(v) for k, v in results.items()} def eval_after_all(self, state: State, logger: Logger) -> Dict[str, float]: new_metrics = self.compute_averages(state) if len(new_metrics) == 0: return {} composite_scores = {} for category in self.categories: missing_metrics = [] composite_scores[category['name']] = [] for benchmark in category['benchmarks']: key = f"{benchmark['name']}/{benchmark['num_fewshot']}-shot" if key not in new_metrics: log.warning( f'Could not find results for benchmark: {benchmark}.') missing_metrics.append(key) else: score = new_metrics[key] if self.subtract_random_baseline: score -= benchmark['random_baseline'] if self.rescale_accuracy and self.subtract_random_baseline: score /= 1.0 - benchmark['random_baseline'] composite_scores[category['name']].append({ 'name': benchmark['name'], 'score': score, 'weighting': benchmark['weighting'] }) if len(missing_metrics) > 0: log.warning( f"Removing category `{category['name']}` from scores because benchmarks were missing: {missing_metrics}" ) del composite_scores[category['name']] continue total_weight = sum( k['weighting'] for k in composite_scores[category['name']]) composite_scores[category['name']] = sum( k['score'] * (k['weighting'] / total_weight) for k in composite_scores[category['name']]) composite_scores = { f'icl/metrics/eval_gauntlet/{k}': v for k, v in composite_scores.items() } composite_scores['icl/metrics/eval_gauntlet/average'] = sum( composite_scores.values()) / len(composite_scores.values()) if len( composite_scores.values()) > 0 else 0 if logger is not None: logger.log_metrics(composite_scores) return composite_scores