crystalchen commited on
Commit
9dbfb4d
·
verified ·
1 Parent(s): 9f242ff

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-funsd
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-funsd
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7276
22
+ - Answer: {'precision': 0.7205240174672489, 'recall': 0.8158220024721878, 'f1': 0.7652173913043478, 'number': 809}
23
+ - Header: {'precision': 0.2903225806451613, 'recall': 0.3025210084033613, 'f1': 0.2962962962962963, 'number': 119}
24
+ - Question: {'precision': 0.7903508771929825, 'recall': 0.8460093896713615, 'f1': 0.8172335600907029, 'number': 1065}
25
+ - Overall Precision: 0.7326
26
+ - Overall Recall: 0.8013
27
+ - Overall F1: 0.7654
28
+ - Overall Accuracy: 0.8111
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.735 | 1.0 | 10 | 1.5211 | {'precision': 0.04572098475967175, 'recall': 0.048207663782447466, 'f1': 0.04693140794223826, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2578616352201258, 'recall': 0.26948356807511736, 'f1': 0.26354453627180896, 'number': 1065} | 0.1658 | 0.1636 | 0.1647 | 0.4315 |
61
+ | 1.353 | 2.0 | 20 | 1.1828 | {'precision': 0.18625954198473282, 'recall': 0.1508034610630408, 'f1': 0.16666666666666669, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.48657445077298617, 'recall': 0.5615023474178403, 'f1': 0.5213600697471664, 'number': 1065} | 0.3808 | 0.3613 | 0.3708 | 0.5930 |
62
+ | 1.027 | 3.0 | 30 | 0.9100 | {'precision': 0.53, 'recall': 0.5241038318912238, 'f1': 0.5270354257302672, 'number': 809} | {'precision': 0.16981132075471697, 'recall': 0.07563025210084033, 'f1': 0.10465116279069768, 'number': 119} | {'precision': 0.6330434782608696, 'recall': 0.6835680751173709, 'f1': 0.6573363431151242, 'number': 1065} | 0.5796 | 0.5825 | 0.5811 | 0.7286 |
63
+ | 0.7694 | 4.0 | 40 | 0.7622 | {'precision': 0.6295546558704453, 'recall': 0.7688504326328801, 'f1': 0.6922648859209795, 'number': 809} | {'precision': 0.22727272727272727, 'recall': 0.12605042016806722, 'f1': 0.16216216216216214, 'number': 119} | {'precision': 0.704, 'recall': 0.7436619718309859, 'f1': 0.7232876712328766, 'number': 1065} | 0.6558 | 0.7170 | 0.6850 | 0.7708 |
64
+ | 0.6233 | 5.0 | 50 | 0.7113 | {'precision': 0.6527196652719666, 'recall': 0.7713226205191595, 'f1': 0.7070821529745043, 'number': 809} | {'precision': 0.26136363636363635, 'recall': 0.19327731092436976, 'f1': 0.22222222222222224, 'number': 119} | {'precision': 0.6977309562398704, 'recall': 0.8084507042253521, 'f1': 0.7490213136146151, 'number': 1065} | 0.6620 | 0.7566 | 0.7062 | 0.7895 |
65
+ | 0.531 | 6.0 | 60 | 0.6976 | {'precision': 0.6386138613861386, 'recall': 0.7972805933250927, 'f1': 0.709180868609126, 'number': 809} | {'precision': 0.22972972972972974, 'recall': 0.14285714285714285, 'f1': 0.17616580310880825, 'number': 119} | {'precision': 0.7175572519083969, 'recall': 0.7943661971830986, 'f1': 0.7540106951871658, 'number': 1065} | 0.6664 | 0.7566 | 0.7086 | 0.7866 |
66
+ | 0.4577 | 7.0 | 70 | 0.6823 | {'precision': 0.675531914893617, 'recall': 0.7849196538936959, 'f1': 0.7261292166952545, 'number': 809} | {'precision': 0.21951219512195122, 'recall': 0.226890756302521, 'f1': 0.2231404958677686, 'number': 119} | {'precision': 0.7434819175777965, 'recall': 0.8300469483568075, 'f1': 0.7843833185448092, 'number': 1065} | 0.6865 | 0.7757 | 0.7284 | 0.8001 |
67
+ | 0.3982 | 8.0 | 80 | 0.6871 | {'precision': 0.6847710330138446, 'recall': 0.7948084054388134, 'f1': 0.7356979405034326, 'number': 809} | {'precision': 0.2621359223300971, 'recall': 0.226890756302521, 'f1': 0.24324324324324326, 'number': 119} | {'precision': 0.7569386038687973, 'recall': 0.8450704225352113, 'f1': 0.7985803016858917, 'number': 1065} | 0.7037 | 0.7878 | 0.7434 | 0.8091 |
68
+ | 0.3614 | 9.0 | 90 | 0.6850 | {'precision': 0.7039045553145337, 'recall': 0.8022249690976514, 'f1': 0.7498555748122473, 'number': 809} | {'precision': 0.2692307692307692, 'recall': 0.23529411764705882, 'f1': 0.25112107623318386, 'number': 119} | {'precision': 0.7635593220338983, 'recall': 0.8460093896713615, 'f1': 0.8026726057906458, 'number': 1065} | 0.7153 | 0.7918 | 0.7516 | 0.8101 |
69
+ | 0.354 | 10.0 | 100 | 0.6937 | {'precision': 0.7171270718232045, 'recall': 0.8022249690976514, 'f1': 0.7572928821470245, 'number': 809} | {'precision': 0.30275229357798167, 'recall': 0.2773109243697479, 'f1': 0.28947368421052627, 'number': 119} | {'precision': 0.7840616966580977, 'recall': 0.8591549295774648, 'f1': 0.8198924731182796, 'number': 1065} | 0.7322 | 0.8013 | 0.7652 | 0.8140 |
70
+ | 0.2994 | 11.0 | 110 | 0.7161 | {'precision': 0.7063236870310825, 'recall': 0.8145859085290482, 'f1': 0.7566016073478761, 'number': 809} | {'precision': 0.2631578947368421, 'recall': 0.29411764705882354, 'f1': 0.27777777777777773, 'number': 119} | {'precision': 0.7885816235504014, 'recall': 0.8300469483568075, 'f1': 0.808783165599268, 'number': 1065} | 0.7215 | 0.7918 | 0.7550 | 0.8067 |
71
+ | 0.2908 | 12.0 | 120 | 0.7068 | {'precision': 0.7208287895310797, 'recall': 0.8170580964153276, 'f1': 0.7659327925840093, 'number': 809} | {'precision': 0.3, 'recall': 0.2773109243697479, 'f1': 0.28820960698689957, 'number': 119} | {'precision': 0.7865266841644795, 'recall': 0.844131455399061, 'f1': 0.8143115942028986, 'number': 1065} | 0.7341 | 0.7993 | 0.7653 | 0.8134 |
72
+ | 0.2689 | 13.0 | 130 | 0.7206 | {'precision': 0.7186477644492911, 'recall': 0.8145859085290482, 'f1': 0.7636152954808806, 'number': 809} | {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} | {'precision': 0.7954345917471466, 'recall': 0.8507042253521127, 'f1': 0.822141560798548, 'number': 1065} | 0.7331 | 0.8023 | 0.7662 | 0.8120 |
73
+ | 0.2527 | 14.0 | 140 | 0.7260 | {'precision': 0.724972497249725, 'recall': 0.8145859085290482, 'f1': 0.7671711292200234, 'number': 809} | {'precision': 0.2892561983471074, 'recall': 0.29411764705882354, 'f1': 0.2916666666666667, 'number': 119} | {'precision': 0.7900696864111498, 'recall': 0.8516431924882629, 'f1': 0.8197017623136014, 'number': 1065} | 0.7351 | 0.8033 | 0.7677 | 0.8104 |
74
+ | 0.2511 | 15.0 | 150 | 0.7276 | {'precision': 0.7205240174672489, 'recall': 0.8158220024721878, 'f1': 0.7652173913043478, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.3025210084033613, 'f1': 0.2962962962962963, 'number': 119} | {'precision': 0.7903508771929825, 'recall': 0.8460093896713615, 'f1': 0.8172335600907029, 'number': 1065} | 0.7326 | 0.8013 | 0.7654 | 0.8111 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.46.3
80
+ - Pytorch 2.5.1+cu121
81
+ - Datasets 3.1.0
82
+ - Tokenizers 0.20.3
logs/events.out.tfevents.1733733906.f84a642f5617.878.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b9cd1a4d5c54b03bbfea201371ad13e1080b0d82bde6e411229cf6d611f0718
3
- size 15151
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc578b185435847565f5d8ca36a265a6ba455373633758e88da34a2a409f3b49
3
+ size 16220
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5bdf779fdfe7f50f9739c4fd2e5cb0c3317068c6c7f469eba81541ab12d96c5f
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e3fda33fe94bdff2cd9b3683aba074c0a7a8b68e23fc05a1c5874fe6333f85
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff