File size: 3,129 Bytes
8bb781b b7ef927 8bb781b b7ef927 8bb781b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- bigcgen
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-bigcgen-female-30hrs-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mms-1b-bigcgen-female-30hrs-model
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.5369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 14.2597 | 0.0501 | 100 | inf | 1.0025 |
| 6.2197 | 0.1002 | 200 | inf | 0.9946 |
| 5.2752 | 0.1503 | 300 | inf | 1.0316 |
| 2.3626 | 0.2004 | 400 | inf | 0.5998 |
| 1.7448 | 0.2504 | 500 | inf | 0.5814 |
| 1.6955 | 0.3005 | 600 | inf | 0.5709 |
| 1.6841 | 0.3506 | 700 | inf | 0.5596 |
| 1.693 | 0.4007 | 800 | inf | 0.5639 |
| 1.688 | 0.4508 | 900 | inf | 0.5555 |
| 1.5718 | 0.5009 | 1000 | inf | 0.5476 |
| 1.5855 | 0.5510 | 1100 | inf | 0.5482 |
| 1.4783 | 0.6011 | 1200 | inf | 0.5471 |
| 1.5198 | 0.6511 | 1300 | inf | 0.5476 |
| 1.4941 | 0.7012 | 1400 | inf | 0.5469 |
| 1.5916 | 0.7513 | 1500 | inf | 0.5426 |
| 1.4683 | 0.8014 | 1600 | inf | 0.5460 |
| 1.486 | 0.8515 | 1700 | inf | 0.5528 |
| 1.4353 | 0.9016 | 1800 | inf | 0.5435 |
| 1.6166 | 0.9517 | 1900 | inf | 0.5541 |
| 1.531 | 1.0015 | 2000 | inf | 0.5535 |
| 1.5441 | 1.0516 | 2100 | inf | 0.5478 |
| 1.3459 | 1.1017 | 2200 | inf | 0.5274 |
| 1.357 | 1.1518 | 2300 | inf | 0.5269 |
| 1.4464 | 1.2019 | 2400 | inf | 0.5226 |
| 1.4326 | 1.2519 | 2500 | inf | 0.5369 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|