--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-male-20hrs-model results: [] --- # mms-1b-bigcgen-male-20hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.4819 - Wer: 0.4453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 16.6224 | 0.0779 | 100 | 3.4136 | 1.0050 | | 6.3668 | 0.1557 | 200 | 2.9155 | 1.0462 | | 4.9805 | 0.2336 | 300 | 0.8884 | 0.6814 | | 1.9813 | 0.3114 | 400 | 0.6719 | 0.5626 | | 1.7501 | 0.3893 | 500 | 0.6440 | 0.5494 | | 1.5396 | 0.4671 | 600 | 0.6134 | 0.5319 | | 1.498 | 0.5450 | 700 | 0.6120 | 0.5162 | | 1.475 | 0.6228 | 800 | 0.6036 | 0.5167 | | 1.4093 | 0.7007 | 900 | 0.6058 | 0.5057 | | 1.4896 | 0.7785 | 1000 | 0.6087 | 0.5121 | | 1.3766 | 0.8564 | 1100 | 0.5707 | 0.5001 | | 1.5787 | 0.9342 | 1200 | 0.5645 | 0.4907 | | 1.5263 | 1.0117 | 1300 | 0.5231 | 0.4766 | | 1.3527 | 1.0895 | 1400 | 0.5119 | 0.4780 | | 1.3688 | 1.1674 | 1500 | 0.5115 | 0.4850 | | 1.2191 | 1.2452 | 1600 | 0.5105 | 0.4746 | | 1.1941 | 1.3231 | 1700 | 0.4952 | 0.4698 | | 1.2454 | 1.4009 | 1800 | 0.4935 | 0.4780 | | 1.2166 | 1.4788 | 1900 | 0.4931 | 0.4742 | | 1.2543 | 1.5566 | 2000 | 0.4945 | 0.4609 | | 1.1682 | 1.6345 | 2100 | 0.5006 | 0.4626 | | 1.1835 | 1.7123 | 2200 | 0.4783 | 0.4655 | | 1.1652 | 1.7902 | 2300 | 0.4827 | 0.4520 | | 1.2329 | 1.8680 | 2400 | 0.4889 | 0.4549 | | 1.1871 | 1.9459 | 2500 | 0.4753 | 0.4547 | | 1.1469 | 2.0234 | 2600 | 0.4830 | 0.4532 | | 1.1214 | 2.1012 | 2700 | 0.4740 | 0.4508 | | 1.1185 | 2.1791 | 2800 | 0.4788 | 0.4516 | | 1.1788 | 2.2569 | 2900 | 0.4865 | 0.4571 | | 1.1214 | 2.3348 | 3000 | 0.4726 | 0.4434 | | 1.1868 | 2.4126 | 3100 | 0.4846 | 0.4528 | | 1.2368 | 2.4905 | 3200 | 0.4775 | 0.4335 | | 1.214 | 2.5683 | 3300 | 0.4925 | 0.4422 | | 1.1078 | 2.6462 | 3400 | 0.4820 | 0.4455 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0