--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-male-30hrs-model results: [] --- # mms-1b-bigcgen-male-30hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.4418 - Wer: 0.4513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.8177 | 0.0518 | 100 | 0.9883 | 0.8360 | | 1.9066 | 0.1035 | 200 | 0.6111 | 0.5658 | | 1.6259 | 0.1553 | 300 | 0.5919 | 0.5600 | | 1.5344 | 0.2071 | 400 | 0.5518 | 0.5453 | | 1.5788 | 0.2589 | 500 | 0.5322 | 0.5417 | | 1.3816 | 0.3106 | 600 | 0.4890 | 0.5234 | | 1.3242 | 0.3624 | 700 | 0.4798 | 0.5032 | | 1.301 | 0.4142 | 800 | 0.4813 | 0.5160 | | 1.1288 | 0.4660 | 900 | 0.4632 | 0.4895 | | 1.2779 | 0.5177 | 1000 | 0.4606 | 0.4855 | | 1.172 | 0.5695 | 1100 | 0.4532 | 0.4835 | | 1.2388 | 0.6213 | 1200 | 0.4610 | 0.4833 | | 1.2582 | 0.6731 | 1300 | 0.4502 | 0.4667 | | 1.1046 | 0.7248 | 1400 | 0.4608 | 0.4696 | | 1.2732 | 0.7766 | 1500 | 0.4450 | 0.4696 | | 1.2323 | 0.8284 | 1600 | 0.4495 | 0.4631 | | 1.282 | 0.8801 | 1700 | 0.4401 | 0.4604 | | 1.1099 | 0.9319 | 1800 | 0.4440 | 0.4612 | | 1.1463 | 0.9837 | 1900 | 0.4417 | 0.4689 | | 1.12 | 1.0352 | 2000 | 0.4408 | 0.4549 | | 1.1037 | 1.0870 | 2100 | 0.4418 | 0.4513 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0