--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - genbed - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-bem-genbed-combined-model results: [] --- # w2v-bert-bem-genbed-combined-model This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2969 - Wer: 0.4669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.6407 | 0.5495 | 200 | 0.6847 | 0.8381 | | 0.458 | 1.0989 | 400 | 0.4856 | 0.6787 | | 0.4014 | 1.6484 | 600 | 0.4310 | 0.6258 | | 0.3523 | 2.1978 | 800 | 0.3654 | 0.5422 | | 0.3298 | 2.7473 | 1000 | 0.3534 | 0.5374 | | 0.2749 | 3.2967 | 1200 | 0.3402 | 0.5196 | | 0.2705 | 3.8462 | 1400 | 0.3284 | 0.5250 | | 0.249 | 4.3956 | 1600 | 0.3499 | 0.5299 | | 0.2508 | 4.9451 | 1800 | 0.3512 | 0.5582 | | 0.2081 | 5.4945 | 2000 | 0.3217 | 0.4808 | | 0.2176 | 6.0440 | 2200 | 0.3141 | 0.472 | | 0.1784 | 6.5934 | 2400 | 0.2969 | 0.4669 | | 0.166 | 7.1429 | 2600 | 0.3367 | 0.4914 | | 0.157 | 7.6923 | 2800 | 0.3206 | 0.4903 | | 0.1398 | 8.2418 | 3000 | 0.3260 | 0.4617 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0