csikasote commited on
Commit
7f8f737
·
1 Parent(s): 5e83e55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -23,12 +23,12 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 42.14
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Bemba
30
 
31
- Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Bemba using the [BembaSpeech](https://csikasote.github.io/BembaSpeech). When using this model, make sure that your speech input is sampled at 16kHz.
32
 
33
  ## Usage
34
 
@@ -79,14 +79,14 @@ from datasets import load_dataset, load_metric
79
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
80
  import re
81
 
82
- test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\t")["test"]
83
  wer = load_metric("wer")
84
 
85
  processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
86
  model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
87
  model.to("cuda")
88
 
89
- chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“]'
90
  #resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
@@ -116,8 +116,8 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
  ```
118
 
119
- **Test Result**: 42.14 %
120
 
121
  ## Training
122
 
123
- The BembaSpeech `train`, `dev` and `test` datasets were used for training, development and evaluation respectively. The script used for training can be found [here](https://colab.research.google.com/drive/1IgdR-EQq5rgmBqw5O6tcfJpmXM8rDX55?usp=sharing).
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 42.17
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Bemba
30
 
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Bemba language of Zambia using the [BembaSpeech](https://csikasote.github.io/BembaSpeech). When using this model, make sure that your speech input is sampled at 16kHz.
32
 
33
  ## Usage
34
 
 
79
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
80
  import re
81
 
82
+ test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\\t")["test"]
83
  wer = load_metric("wer")
84
 
85
  processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
86
  model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba")
87
  model.to("cuda")
88
 
89
+ chars_to_ignore_regex = '[\,\_\?\.\!\;\:\"\“]'
90
  #resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
 
116
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
  ```
118
 
119
+ **Test Result**: 42.17 %
120
 
121
  ## Training
122
 
123
+ The BembaSpeech `train`, `dev` and `test` datasets were used for training, development and evaluation respectively. The script used for evaluating the model on the test dataset can be found [here](https://colab.research.google.com/drive/1aplFHfaXE68HGDwBYV2KqUWPasrk7bXv?usp=sharing).