--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - nyagen metrics: - wer model-index: - name: whisper-large-v3-nyagen-balanced-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nyagen type: nyagen metrics: - name: Wer type: wer value: 0.24026512013256007 --- # whisper-large-v3-nyagen-balanced-model This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the nyagen dataset. It achieves the following results on the evaluation set: - Loss: 0.3155 - Wer: 0.2403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.426 | 1.0756 | 200 | 0.4108 | 0.3070 | | 0.6798 | 2.1511 | 400 | 0.3343 | 0.2867 | | 0.3574 | 3.2267 | 600 | 0.3155 | 0.2403 | | 0.2691 | 4.3023 | 800 | 0.3365 | 0.2158 | | 0.1851 | 5.3779 | 1000 | 0.3159 | 0.2904 | | 0.0715 | 6.4534 | 1200 | 0.3676 | 0.2084 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0