File size: 2,606 Bytes
fb5fd00 c4cbcef fb5fd00 c4cbcef fb5fd00 c4cbcef fb5fd00 c4cbcef fb5fd00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- bemgen
metrics:
- wer
model-index:
- name: whisper-medium-bemgen-combined-model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: bemgen
type: bemgen
metrics:
- name: Wer
type: wer
value: 0.3331540447504303
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-bemgen-combined-model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bemgen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4200
- Wer: 0.3332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.7922 | 0.1980 | 200 | 0.8807 | 0.6663 |
| 1.3451 | 0.3960 | 400 | 0.6738 | 0.5310 |
| 1.1869 | 0.5941 | 600 | 0.5800 | 0.4613 |
| 0.9659 | 0.7921 | 800 | 0.5199 | 0.4211 |
| 0.8946 | 0.9901 | 1000 | 0.4816 | 0.3967 |
| 0.6349 | 1.1881 | 1200 | 0.4725 | 0.3726 |
| 0.6238 | 1.3861 | 1400 | 0.4549 | 0.3603 |
| 0.6244 | 1.5842 | 1600 | 0.4495 | 0.3648 |
| 0.5724 | 1.7822 | 1800 | 0.4362 | 0.3451 |
| 0.6594 | 1.9802 | 2000 | 0.4200 | 0.3332 |
| 0.3207 | 2.1782 | 2200 | 0.4395 | 0.3353 |
| 0.301 | 2.3762 | 2400 | 0.4479 | 0.3275 |
| 0.2863 | 2.5743 | 2600 | 0.4369 | 0.3358 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|