--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bsbigcgen metrics: - wer model-index: - name: whisper-medium-bsbigcgen-female-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bsbigcgen type: bsbigcgen metrics: - name: Wer type: wer value: 0.47723480333730633 --- # whisper-medium-bsbigcgen-female-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bsbigcgen dataset. It achieves the following results on the evaluation set: - Loss: 0.6368 - Wer: 0.4772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.47 | 0.6163 | 200 | 0.9274 | 0.6675 | | 2.569 | 1.2311 | 400 | 0.7236 | 0.5511 | | 2.5305 | 1.8475 | 600 | 0.6368 | 0.4772 | | 1.4563 | 2.4622 | 800 | 0.6518 | 0.4937 | | 0.6413 | 3.0770 | 1000 | 0.6892 | 0.4782 | | 0.581 | 3.6934 | 1200 | 0.6935 | 0.4751 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0