Chi Honolulu
commited on
Commit
·
dfe4529
1
Parent(s):
add1be5
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
3 |
+
# Doc / guide: https://huggingface.co/docs/hub/model-cards
|
4 |
+
license: mit
|
5 |
+
language:
|
6 |
+
- cs
|
7 |
+
---
|
8 |
+
# Model Card for robeczech-base-binary-cs-iib
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
+
This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
The model was fine-tuned on a Czech dataset of Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs probablities for labels {0,1}: Supportive Interactions present or not.
|
19 |
+
|
20 |
+
- **Developed by:** Anonymous
|
21 |
+
- **Language(s):** cs
|
22 |
+
- **Finetuned from:** ufal/robeczech-base
|
23 |
+
|
24 |
+
### Model Sources
|
25 |
+
|
26 |
+
<!-- Provide the basic links for the model. -->
|
27 |
+
|
28 |
+
- **Repository:** https://github.com/chi2024submission
|
29 |
+
- **Paper:** Stay tuned!
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
Here is how to use this model to classify a context-window of a dialogue:
|
33 |
+
|
34 |
+
```python
|
35 |
+
import numpy as np
|
36 |
+
from transformers import AutoTokenizer, RobertaForSequenceClassification
|
37 |
+
|
38 |
+
# Prepare input texts. This model is pretrained and fine-tuned for Czech
|
39 |
+
test_texts = ['Utterance1;Utterance2;Utterance3']
|
40 |
+
|
41 |
+
|
42 |
+
# Load the model and tokenizer
|
43 |
+
model = RobertaForSequenceClassification.from_pretrained('chi2024/robeczech-base-binary-cs-iib',
|
44 |
+
num_labels=2).to("cuda")
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained('chi2024/robeczech-base-binary-cs-iib', use_fast=False, truncation_side='left')
|
46 |
+
assert tokenizer.truncation_side == 'left'
|
47 |
+
|
48 |
+
# Define helper functions
|
49 |
+
def get_probs(text, tokenizer, model):
|
50 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors="pt").to("cuda")
|
51 |
+
outputs = model(**inputs)
|
52 |
+
return outputs[0].softmax(1)
|
53 |
+
|
54 |
+
def preds2class(probs, threshold=0.5):
|
55 |
+
pclasses = np.zeros(probs.shape)
|
56 |
+
pclasses[np.where(probs >= threshold)] = 1
|
57 |
+
return pclasses.argmax(-1)
|
58 |
+
|
59 |
+
def print_predictions(texts):
|
60 |
+
probabilities = [get_probs(texts[i], tokenizer, model).cpu().detach().numpy()[0] for i in
|
61 |
+
range(len(texts))]
|
62 |
+
predicted_classes = preds2class(np.array(probabilities))
|
63 |
+
for c, p in zip(predicted_classes, probabilities):
|
64 |
+
print(f'{c}: {p}')
|
65 |
+
|
66 |
+
# Run the prediction
|
67 |
+
print_predictions(test_texts)
|
68 |
+
```
|