Chi Honolulu commited on
Commit
fe8faca
·
1 Parent(s): 234ae08

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -11,8 +11,6 @@ language:
11
 
12
  This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech.
13
 
14
- ## Model Details
15
-
16
  ### Model Description
17
 
18
  The model was fine-tuned on a Czech dataset of Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs probablities for labels {0,1}: Supportive Interactions present or not.
@@ -33,21 +31,24 @@ Here is how to use this model to classify a context-window of a dialogue:
33
 
34
  ```python
35
  import numpy as np
36
- from transformers import AutoTokenizer, RobertaForSequenceClassification
37
 
38
  # Prepare input texts. This model is pretrained and fine-tuned for Czech
39
  test_texts = ['Utterance1;Utterance2;Utterance3']
40
 
41
-
42
  # Load the model and tokenizer
43
- model = RobertaForSequenceClassification.from_pretrained('chi2024/robeczech-base-binary-cs-iib',
44
- num_labels=2).to("cuda")
45
- tokenizer = AutoTokenizer.from_pretrained('chi2024/robeczech-base-binary-cs-iib', use_fast=False, truncation_side='left')
 
 
 
46
  assert tokenizer.truncation_side == 'left'
47
 
48
  # Define helper functions
49
  def get_probs(text, tokenizer, model):
50
- inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors="pt").to("cuda")
 
51
  outputs = model(**inputs)
52
  return outputs[0].softmax(1)
53
 
@@ -57,8 +58,9 @@ def preds2class(probs, threshold=0.5):
57
  return pclasses.argmax(-1)
58
 
59
  def print_predictions(texts):
60
- probabilities = [get_probs(texts[i], tokenizer, model).cpu().detach().numpy()[0] for i in
61
- range(len(texts))]
 
62
  predicted_classes = preds2class(np.array(probabilities))
63
  for c, p in zip(predicted_classes, probabilities):
64
  print(f'{c}: {p}')
 
11
 
12
  This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech.
13
 
 
 
14
  ### Model Description
15
 
16
  The model was fine-tuned on a Czech dataset of Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs probablities for labels {0,1}: Supportive Interactions present or not.
 
31
 
32
  ```python
33
  import numpy as np
34
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
35
 
36
  # Prepare input texts. This model is pretrained and fine-tuned for Czech
37
  test_texts = ['Utterance1;Utterance2;Utterance3']
38
 
 
39
  # Load the model and tokenizer
40
+ model = AutoModelForSequenceClassification.from_pretrained(
41
+ 'chi2024/robeczech-base-binary-cs-iib', num_labels=2).to("cuda")
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained(
44
+ 'chi2024/robeczech-base-binary-cs-iib',
45
+ use_fast=False, truncation_side='left')
46
  assert tokenizer.truncation_side == 'left'
47
 
48
  # Define helper functions
49
  def get_probs(text, tokenizer, model):
50
+ inputs = tokenizer(text, padding=True, truncation=True, max_length=256,
51
+ return_tensors="pt").to("cuda")
52
  outputs = model(**inputs)
53
  return outputs[0].softmax(1)
54
 
 
58
  return pclasses.argmax(-1)
59
 
60
  def print_predictions(texts):
61
+ probabilities = [get_probs(
62
+ texts[i], tokenizer, model).cpu().detach().numpy()[0]
63
+ for i in range(len(texts))]
64
  predicted_classes = preds2class(np.array(probabilities))
65
  for c, p in zip(predicted_classes, probabilities):
66
  print(f'{c}: {p}')