File size: 2,359 Bytes
19f9c33 e0de6c2 19f9c33 e0de6c2 19f9c33 e0de6c2 19f9c33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
license: mit
language:
- cs
---
# Model Card for xlm-roberta-xl-binary-cs-iib
<!-- Provide a quick summary of what the model is/does. -->
This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech.
## Model Description
The model was fine-tuned on a dataset of Czech Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs probablities for labels {0,1}: Supportive Interactions present or not.
- **Developed by:** Anonymous
- **Language(s):** cs
- **Finetuned from:** xlm-roberta-xl
## Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/chi2024submission
- **Paper:** Stay tuned!
## Usage
Here is how to use this model to classify a context-window of a dialogue:
```python
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Prepare input texts. This model is fine-tuned for Czech
test_texts = ['Utterance1;Utterance2;Utterance3']
# Load the model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(
'chi2024/xlm-roberta-xl-binary-cs-iib', num_labels=2).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(
'chi2024/xlm-roberta-xl-binary-cs-iib',
use_fast=False, truncation_side='left')
assert tokenizer.truncation_side == 'left'
# Define helper functions
def get_probs(text, tokenizer, model):
inputs = tokenizer(text, padding=True, truncation=True, max_length=256,
return_tensors="pt").to("cuda")
outputs = model(**inputs)
return outputs[0].softmax(1)
def preds2class(probs, threshold=0.5):
pclasses = np.zeros(probs.shape)
pclasses[np.where(probs >= threshold)] = 1
return pclasses.argmax(-1)
def print_predictions(texts):
probabilities = [get_probs(
texts[i], tokenizer, model).cpu().detach().numpy()[0]
for i in range(len(texts))]
predicted_classes = preds2class(np.array(probabilities))
for c, p in zip(predicted_classes, probabilities):
print(f'{c}: {p}')
# Run the prediction
print_predictions(test_texts)
``` |