css919 commited on
Commit
5dbc48e
·
1 Parent(s): 2430b54

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.63 +/- 0.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce0f3afcf03b80a2c216b06d3e46484f8ed7aec45049c2701b3328dc8a12448c
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff16d19a550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7ff16d191a80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674751410903689750,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuUa0P6Jlmz8oArc/UuYbvijYkj55I1A+CUSzP1xS3L/yNSy/VhOgv/+clz+uXrK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]]",
60
+ "desired_goal": "[[ 1.4084083 1.2140391 1.4297533 ]\n [-0.15224579 0.2868054 0.20326032]\n [ 1.4005138 -1.7212634 -0.67269814]\n [-1.2505901 1.1844786 -1.3935144 ]]",
61
+ "observation": "[[ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU8QRvcaKET2/S209ynSivUOqKr2uIXM+fbyhvTeCR71DY4Y+DpmnvOOwjTzqD00+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.03558762 0.03553274 0.05793357]\n [-0.07932432 -0.04166628 0.23743317]\n [-0.07897279 -0.04870817 0.26247606]\n [-0.02045872 0.01729626 0.20025602]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO/4LBAHy+L+UhpRSlIwBbJRLMowBdJRHQKTuI84gieN1fZQoaAZoCWgPQwia6V4n9eXlv5SGlFKUaBVLMmgWR0Ck7epx3mmtdX2UKGgGaAloD0MIM4y7QbRW8L+UhpRSlGgVSzJoFkdApO2vAuZkTnV9lChoBmgJaA9DCLKFIAclzPG/lIaUUpRoFUsyaBZHQKTtc1Nxlxx1fZQoaAZoCWgPQwj2twTgnxIBwJSGlFKUaBVLMmgWR0Ck7y+EytV8dX2UKGgGaAloD0MI8UbmkT+Y57+UhpRSlGgVSzJoFkdApO71vddmhHV9lChoBmgJaA9DCHAnEeFfBOi/lIaUUpRoFUsyaBZHQKTuukE9t/F1fZQoaAZoCWgPQwjS30vhQbP7v5SGlFKUaBVLMmgWR0Ck7n7p/wy7dX2UKGgGaAloD0MI/dzQlJ0+9b+UhpRSlGgVSzJoFkdApPAyLwWnCXV9lChoBmgJaA9DCKd38X7cPvK/lIaUUpRoFUsyaBZHQKTv+KYRdyF1fZQoaAZoCWgPQwi14bA08GP8v5SGlFKUaBVLMmgWR0Ck77zmW+oMdX2UKGgGaAloD0MIEk4LXvSV9r+UhpRSlGgVSzJoFkdApO+BY5ksjHV9lChoBmgJaA9DCLEWnwJgPOi/lIaUUpRoFUsyaBZHQKTxPdDYywh1fZQoaAZoCWgPQwijPskdNlH6v5SGlFKUaBVLMmgWR0Ck8QROUMXrdX2UKGgGaAloD0MIbhXEQNc+87+UhpRSlGgVSzJoFkdApPDI3HaN/HV9lChoBmgJaA9DCOF+wAMDyPS/lIaUUpRoFUsyaBZHQKTwjZUT+Nt1fZQoaAZoCWgPQwjx2M9iKZLrv5SGlFKUaBVLMmgWR0Ck8kZjQRf4dX2UKGgGaAloD0MIpbxWQncJ8r+UhpRSlGgVSzJoFkdApPIM2tMfzXV9lChoBmgJaA9DCKN4lbVN8fa/lIaUUpRoFUsyaBZHQKTx0dz4k/t1fZQoaAZoCWgPQwiLTwEwnsHjv5SGlFKUaBVLMmgWR0Ck8ZcmKIi1dX2UKGgGaAloD0MIpGyRtBv977+UhpRSlGgVSzJoFkdApPNndyksSXV9lChoBmgJaA9DCGVyameYWuW/lIaUUpRoFUsyaBZHQKTzLfrKNhp1fZQoaAZoCWgPQwhr09heC/rkv5SGlFKUaBVLMmgWR0Ck8vJ84PwvdX2UKGgGaAloD0MIaM9lahI857+UhpRSlGgVSzJoFkdApPK3Dej2z3V9lChoBmgJaA9DCOp1i8BYn/G/lIaUUpRoFUsyaBZHQKT0hUZvUBp1fZQoaAZoCWgPQwhU5uYb0T3jv5SGlFKUaBVLMmgWR0Ck9EvPLPlddX2UKGgGaAloD0MIFf4Mb9bg4r+UhpRSlGgVSzJoFkdApPQQZ62OQ3V9lChoBmgJaA9DCNMzvcRYpuG/lIaUUpRoFUsyaBZHQKTz1Qqqfe11fZQoaAZoCWgPQwi9qx4wD1nzv5SGlFKUaBVLMmgWR0Ck9ZhLf1pTdX2UKGgGaAloD0MIhXzQs1l177+UhpRSlGgVSzJoFkdApPVexjawlnV9lChoBmgJaA9DCAKAY8+ei/e/lIaUUpRoFUsyaBZHQKT1Iz2vjfh1fZQoaAZoCWgPQwgzNnSzPxDyv5SGlFKUaBVLMmgWR0Ck9OfgaWHDdX2UKGgGaAloD0MIrg/rjVph3b+UhpRSlGgVSzJoFkdApPa9M/QjU3V9lChoBmgJaA9DCIC1ateEtOm/lIaUUpRoFUsyaBZHQKT2g6BAfMh1fZQoaAZoCWgPQwgVkPY/wFr+v5SGlFKUaBVLMmgWR0Ck9kgiml67dX2UKGgGaAloD0MIM40mF2Ng87+UhpRSlGgVSzJoFkdApPYNTBInSnV9lChoBmgJaA9DCNCbilQYW9m/lIaUUpRoFUsyaBZHQKT37bgTAWV1fZQoaAZoCWgPQwgtlExO7Qzgv5SGlFKUaBVLMmgWR0Ck97QrMC9zdX2UKGgGaAloD0MIjWK5pdWQ9L+UhpRSlGgVSzJoFkdApPd4tUXHinV9lChoBmgJaA9DCBixTwDFyOC/lIaUUpRoFUsyaBZHQKT3PVhkRSR1fZQoaAZoCWgPQwilu+tsyP8BwJSGlFKUaBVLMmgWR0Ck+SDcdo38dX2UKGgGaAloD0MIO8eA7PWu8b+UhpRSlGgVSzJoFkdApPjnQjUutnV9lChoBmgJaA9DCIYBS65iMfS/lIaUUpRoFUsyaBZHQKT4q4//vOR1fZQoaAZoCWgPQwhQqKePwJ/qv5SGlFKUaBVLMmgWR0Ck+HAs9SuRdX2UKGgGaAloD0MIWYY41sUt+b+UhpRSlGgVSzJoFkdApPo6O7xusXV9lChoBmgJaA9DCA1TW+og7/6/lIaUUpRoFUsyaBZHQKT6AKXOW0J1fZQoaAZoCWgPQwh48X7cfvnkv5SGlFKUaBVLMmgWR0Ck+cUhFEy+dX2UKGgGaAloD0MIVoMwt3v59L+UhpRSlGgVSzJoFkdApPmJuTA31nV9lChoBmgJaA9DCOj6PhwkROm/lIaUUpRoFUsyaBZHQKT7S60Y0l91fZQoaAZoCWgPQwglBKvq5ffuv5SGlFKUaBVLMmgWR0Ck+xJOnEVGdX2UKGgGaAloD0MIM2yU9ZuJ17+UhpRSlGgVSzJoFkdApPrW8kD6nHV9lChoBmgJaA9DCOvIkc7ASOO/lIaUUpRoFUsyaBZHQKT6m7mMfih1fZQoaAZoCWgPQwj5Tsx6MRTxv5SGlFKUaBVLMmgWR0Ck/GJyyUs4dX2UKGgGaAloD0MIStQLPs1J7b+UhpRSlGgVSzJoFkdApPwo8Md92HV9lChoBmgJaA9DCFZ9rrZif/G/lIaUUpRoFUsyaBZHQKT77XnyNGV1fZQoaAZoCWgPQwjFdCFWfwTpv5SGlFKUaBVLMmgWR0Ck+7JNTLntdX2UKGgGaAloD0MIjgHZ690f0L+UhpRSlGgVSzJoFkdApP18kfLcK3V9lChoBmgJaA9DCJboLLMIReK/lIaUUpRoFUsyaBZHQKT9QvxH5Jt1fZQoaAZoCWgPQwijPV5Ihwfxv5SGlFKUaBVLMmgWR0Ck/Qd9tuUEdX2UKGgGaAloD0MIsVHWbyam3L+UhpRSlGgVSzJoFkdApPzMKLKmsXV9lChoBmgJaA9DCNYBEHf16va/lIaUUpRoFUsyaBZHQKT+le9Ba9t1fZQoaAZoCWgPQwiS6GUUy23wv5SGlFKUaBVLMmgWR0Ck/lxkEs8QdX2UKGgGaAloD0MI4ba28LzU7L+UhpRSlGgVSzJoFkdApP4g3m3fAXV9lChoBmgJaA9DCOOON/ktOuy/lIaUUpRoFUsyaBZHQKT95XyRSxZ1fZQoaAZoCWgPQwh0RSkhWNX0v5SGlFKUaBVLMmgWR0Ck/64dIXj3dX2UKGgGaAloD0MIDjFe86rO+r+UhpRSlGgVSzJoFkdApP90qJ/G2nV9lChoBmgJaA9DCPp+arx0E+e/lIaUUpRoFUsyaBZHQKT/OT2WY4R1fZQoaAZoCWgPQwidLouJzcf2v5SGlFKUaBVLMmgWR0Ck/v3fyf+TdX2UKGgGaAloD0MIa5kMx/MZ87+UhpRSlGgVSzJoFkdApQDQKWszVXV9lChoBmgJaA9DCH/cfvlkxfe/lIaUUpRoFUsyaBZHQKUAlpudf9h1fZQoaAZoCWgPQwg0uoPYmcLvv5SGlFKUaBVLMmgWR0ClAFso2GZedX2UKGgGaAloD0MIAKq4cYv54r+UhpRSlGgVSzJoFkdApQAf29L6DXV9lChoBmgJaA9DCFggelImNe+/lIaUUpRoFUsyaBZHQKUB8Ox0MgF1fZQoaAZoCWgPQwhJufscH63sv5SGlFKUaBVLMmgWR0ClAbd+ocaPdX2UKGgGaAloD0MIvFzEd2JW+L+UhpRSlGgVSzJoFkdApQF8EvCdjHV9lChoBmgJaA9DCMJPHEC/7+e/lIaUUpRoFUsyaBZHQKUBQL6UJOZ1fZQoaAZoCWgPQwi7JqQ1Bp3sv5SGlFKUaBVLMmgWR0ClAwjaXa8IdX2UKGgGaAloD0MIqRJlbyln77+UhpRSlGgVSzJoFkdApQLPR9gF5nV9lChoBmgJaA9DCDNrKSDt/+u/lIaUUpRoFUsyaBZHQKUCk9YfW+Z1fZQoaAZoCWgPQwhxHHi13Jnrv5SGlFKUaBVLMmgWR0ClAliCaqjrdX2UKGgGaAloD0MId9hEZi5w3b+UhpRSlGgVSzJoFkdApQQnCyhSL3V9lChoBmgJaA9DCMRBQpQv6O+/lIaUUpRoFUsyaBZHQKUD7ZnL7oB1fZQoaAZoCWgPQwhntiv0wfLzv5SGlFKUaBVLMmgWR0ClA7Imw7kodX2UKGgGaAloD0MIZFxxcVQu9b+UhpRSlGgVSzJoFkdApQN240/GEXV9lChoBmgJaA9DCD4JbM7BM+K/lIaUUpRoFUsyaBZHQKUFPqgRK6F1fZQoaAZoCWgPQwgLl1XYDHDov5SGlFKUaBVLMmgWR0ClBQUcGTs6dX2UKGgGaAloD0MI1ZP5R98k9b+UhpRSlGgVSzJoFkdApQTJfa6BiHV9lChoBmgJaA9DCOjZrPpcbem/lIaUUpRoFUsyaBZHQKUEjiFTNt91fZQoaAZoCWgPQwjD9L2G4Ljuv5SGlFKUaBVLMmgWR0ClBmFtj0+UdX2UKGgGaAloD0MI7DL8pxso2r+UhpRSlGgVSzJoFkdApQYoAp8WsXV9lChoBmgJaA9DCJ+OxwxUhvK/lIaUUpRoFUsyaBZHQKUF7Vqesgd1fZQoaAZoCWgPQwjeWFAYlOnuv5SGlFKUaBVLMmgWR0ClBbIxYaHcdX2UKGgGaAloD0MIzGPNyCD34r+UhpRSlGgVSzJoFkdApQd1TBInSnV9lChoBmgJaA9DCCkJibSNv+q/lIaUUpRoFUsyaBZHQKUHO7f51vF1fZQoaAZoCWgPQwieI/JdSt3hv5SGlFKUaBVLMmgWR0ClBwBO58SgdX2UKGgGaAloD0MI8IgK1c3F7b+UhpRSlGgVSzJoFkdApQbEv9LpR3V9lChoBmgJaA9DCCCcTx2rlOW/lIaUUpRoFUsyaBZHQKUIqbx3FDR1fZQoaAZoCWgPQwiBCkeQSjHzv5SGlFKUaBVLMmgWR0ClCHA5BC2MdX2UKGgGaAloD0MIrMlTVtN147+UhpRSlGgVSzJoFkdApQg0vZh8Y3V9lChoBmgJaA9DCAdhbvdy3/G/lIaUUpRoFUsyaBZHQKUH+aqCHyp1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddcdeff62045e1e692413551c36fe4656e1a274c30be195454bf8be07448bffb
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a3ed50f8d82a67b184ae40155731a8c9a0221a9d9ff62dd56da95e7f570b1a9
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff16d19a550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff16d191a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674751410903689750, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuUa0P6Jlmz8oArc/UuYbvijYkj55I1A+CUSzP1xS3L/yNSy/VhOgv/+clz+uXrK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]]", "desired_goal": "[[ 1.4084083 1.2140391 1.4297533 ]\n [-0.15224579 0.2868054 0.20326032]\n [ 1.4005138 -1.7212634 -0.67269814]\n [-1.2505901 1.1844786 -1.3935144 ]]", "observation": "[[ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU8QRvcaKET2/S209ynSivUOqKr2uIXM+fbyhvTeCR71DY4Y+DpmnvOOwjTzqD00+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03558762 0.03553274 0.05793357]\n [-0.07932432 -0.04166628 0.23743317]\n [-0.07897279 -0.04870817 0.26247606]\n [-0.02045872 0.01729626 0.20025602]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO/4LBAHy+L+UhpRSlIwBbJRLMowBdJRHQKTuI84gieN1fZQoaAZoCWgPQwia6V4n9eXlv5SGlFKUaBVLMmgWR0Ck7epx3mmtdX2UKGgGaAloD0MIM4y7QbRW8L+UhpRSlGgVSzJoFkdApO2vAuZkTnV9lChoBmgJaA9DCLKFIAclzPG/lIaUUpRoFUsyaBZHQKTtc1Nxlxx1fZQoaAZoCWgPQwj2twTgnxIBwJSGlFKUaBVLMmgWR0Ck7y+EytV8dX2UKGgGaAloD0MI8UbmkT+Y57+UhpRSlGgVSzJoFkdApO71vddmhHV9lChoBmgJaA9DCHAnEeFfBOi/lIaUUpRoFUsyaBZHQKTuukE9t/F1fZQoaAZoCWgPQwjS30vhQbP7v5SGlFKUaBVLMmgWR0Ck7n7p/wy7dX2UKGgGaAloD0MI/dzQlJ0+9b+UhpRSlGgVSzJoFkdApPAyLwWnCXV9lChoBmgJaA9DCKd38X7cPvK/lIaUUpRoFUsyaBZHQKTv+KYRdyF1fZQoaAZoCWgPQwi14bA08GP8v5SGlFKUaBVLMmgWR0Ck77zmW+oMdX2UKGgGaAloD0MIEk4LXvSV9r+UhpRSlGgVSzJoFkdApO+BY5ksjHV9lChoBmgJaA9DCLEWnwJgPOi/lIaUUpRoFUsyaBZHQKTxPdDYywh1fZQoaAZoCWgPQwijPskdNlH6v5SGlFKUaBVLMmgWR0Ck8QROUMXrdX2UKGgGaAloD0MIbhXEQNc+87+UhpRSlGgVSzJoFkdApPDI3HaN/HV9lChoBmgJaA9DCOF+wAMDyPS/lIaUUpRoFUsyaBZHQKTwjZUT+Nt1fZQoaAZoCWgPQwjx2M9iKZLrv5SGlFKUaBVLMmgWR0Ck8kZjQRf4dX2UKGgGaAloD0MIpbxWQncJ8r+UhpRSlGgVSzJoFkdApPIM2tMfzXV9lChoBmgJaA9DCKN4lbVN8fa/lIaUUpRoFUsyaBZHQKTx0dz4k/t1fZQoaAZoCWgPQwiLTwEwnsHjv5SGlFKUaBVLMmgWR0Ck8ZcmKIi1dX2UKGgGaAloD0MIpGyRtBv977+UhpRSlGgVSzJoFkdApPNndyksSXV9lChoBmgJaA9DCGVyameYWuW/lIaUUpRoFUsyaBZHQKTzLfrKNhp1fZQoaAZoCWgPQwhr09heC/rkv5SGlFKUaBVLMmgWR0Ck8vJ84PwvdX2UKGgGaAloD0MIaM9lahI857+UhpRSlGgVSzJoFkdApPK3Dej2z3V9lChoBmgJaA9DCOp1i8BYn/G/lIaUUpRoFUsyaBZHQKT0hUZvUBp1fZQoaAZoCWgPQwhU5uYb0T3jv5SGlFKUaBVLMmgWR0Ck9EvPLPlddX2UKGgGaAloD0MIFf4Mb9bg4r+UhpRSlGgVSzJoFkdApPQQZ62OQ3V9lChoBmgJaA9DCNMzvcRYpuG/lIaUUpRoFUsyaBZHQKTz1Qqqfe11fZQoaAZoCWgPQwi9qx4wD1nzv5SGlFKUaBVLMmgWR0Ck9ZhLf1pTdX2UKGgGaAloD0MIhXzQs1l177+UhpRSlGgVSzJoFkdApPVexjawlnV9lChoBmgJaA9DCAKAY8+ei/e/lIaUUpRoFUsyaBZHQKT1Iz2vjfh1fZQoaAZoCWgPQwgzNnSzPxDyv5SGlFKUaBVLMmgWR0Ck9OfgaWHDdX2UKGgGaAloD0MIrg/rjVph3b+UhpRSlGgVSzJoFkdApPa9M/QjU3V9lChoBmgJaA9DCIC1ateEtOm/lIaUUpRoFUsyaBZHQKT2g6BAfMh1fZQoaAZoCWgPQwgVkPY/wFr+v5SGlFKUaBVLMmgWR0Ck9kgiml67dX2UKGgGaAloD0MIM40mF2Ng87+UhpRSlGgVSzJoFkdApPYNTBInSnV9lChoBmgJaA9DCNCbilQYW9m/lIaUUpRoFUsyaBZHQKT37bgTAWV1fZQoaAZoCWgPQwgtlExO7Qzgv5SGlFKUaBVLMmgWR0Ck97QrMC9zdX2UKGgGaAloD0MIjWK5pdWQ9L+UhpRSlGgVSzJoFkdApPd4tUXHinV9lChoBmgJaA9DCBixTwDFyOC/lIaUUpRoFUsyaBZHQKT3PVhkRSR1fZQoaAZoCWgPQwilu+tsyP8BwJSGlFKUaBVLMmgWR0Ck+SDcdo38dX2UKGgGaAloD0MIO8eA7PWu8b+UhpRSlGgVSzJoFkdApPjnQjUutnV9lChoBmgJaA9DCIYBS65iMfS/lIaUUpRoFUsyaBZHQKT4q4//vOR1fZQoaAZoCWgPQwhQqKePwJ/qv5SGlFKUaBVLMmgWR0Ck+HAs9SuRdX2UKGgGaAloD0MIWYY41sUt+b+UhpRSlGgVSzJoFkdApPo6O7xusXV9lChoBmgJaA9DCA1TW+og7/6/lIaUUpRoFUsyaBZHQKT6AKXOW0J1fZQoaAZoCWgPQwh48X7cfvnkv5SGlFKUaBVLMmgWR0Ck+cUhFEy+dX2UKGgGaAloD0MIVoMwt3v59L+UhpRSlGgVSzJoFkdApPmJuTA31nV9lChoBmgJaA9DCOj6PhwkROm/lIaUUpRoFUsyaBZHQKT7S60Y0l91fZQoaAZoCWgPQwglBKvq5ffuv5SGlFKUaBVLMmgWR0Ck+xJOnEVGdX2UKGgGaAloD0MIM2yU9ZuJ17+UhpRSlGgVSzJoFkdApPrW8kD6nHV9lChoBmgJaA9DCOvIkc7ASOO/lIaUUpRoFUsyaBZHQKT6m7mMfih1fZQoaAZoCWgPQwj5Tsx6MRTxv5SGlFKUaBVLMmgWR0Ck/GJyyUs4dX2UKGgGaAloD0MIStQLPs1J7b+UhpRSlGgVSzJoFkdApPwo8Md92HV9lChoBmgJaA9DCFZ9rrZif/G/lIaUUpRoFUsyaBZHQKT77XnyNGV1fZQoaAZoCWgPQwjFdCFWfwTpv5SGlFKUaBVLMmgWR0Ck+7JNTLntdX2UKGgGaAloD0MIjgHZ690f0L+UhpRSlGgVSzJoFkdApP18kfLcK3V9lChoBmgJaA9DCJboLLMIReK/lIaUUpRoFUsyaBZHQKT9QvxH5Jt1fZQoaAZoCWgPQwijPV5Ihwfxv5SGlFKUaBVLMmgWR0Ck/Qd9tuUEdX2UKGgGaAloD0MIsVHWbyam3L+UhpRSlGgVSzJoFkdApPzMKLKmsXV9lChoBmgJaA9DCNYBEHf16va/lIaUUpRoFUsyaBZHQKT+le9Ba9t1fZQoaAZoCWgPQwiS6GUUy23wv5SGlFKUaBVLMmgWR0Ck/lxkEs8QdX2UKGgGaAloD0MI4ba28LzU7L+UhpRSlGgVSzJoFkdApP4g3m3fAXV9lChoBmgJaA9DCOOON/ktOuy/lIaUUpRoFUsyaBZHQKT95XyRSxZ1fZQoaAZoCWgPQwh0RSkhWNX0v5SGlFKUaBVLMmgWR0Ck/64dIXj3dX2UKGgGaAloD0MIDjFe86rO+r+UhpRSlGgVSzJoFkdApP90qJ/G2nV9lChoBmgJaA9DCPp+arx0E+e/lIaUUpRoFUsyaBZHQKT/OT2WY4R1fZQoaAZoCWgPQwidLouJzcf2v5SGlFKUaBVLMmgWR0Ck/v3fyf+TdX2UKGgGaAloD0MIa5kMx/MZ87+UhpRSlGgVSzJoFkdApQDQKWszVXV9lChoBmgJaA9DCH/cfvlkxfe/lIaUUpRoFUsyaBZHQKUAlpudf9h1fZQoaAZoCWgPQwg0uoPYmcLvv5SGlFKUaBVLMmgWR0ClAFso2GZedX2UKGgGaAloD0MIAKq4cYv54r+UhpRSlGgVSzJoFkdApQAf29L6DXV9lChoBmgJaA9DCFggelImNe+/lIaUUpRoFUsyaBZHQKUB8Ox0MgF1fZQoaAZoCWgPQwhJufscH63sv5SGlFKUaBVLMmgWR0ClAbd+ocaPdX2UKGgGaAloD0MIvFzEd2JW+L+UhpRSlGgVSzJoFkdApQF8EvCdjHV9lChoBmgJaA9DCMJPHEC/7+e/lIaUUpRoFUsyaBZHQKUBQL6UJOZ1fZQoaAZoCWgPQwi7JqQ1Bp3sv5SGlFKUaBVLMmgWR0ClAwjaXa8IdX2UKGgGaAloD0MIqRJlbyln77+UhpRSlGgVSzJoFkdApQLPR9gF5nV9lChoBmgJaA9DCDNrKSDt/+u/lIaUUpRoFUsyaBZHQKUCk9YfW+Z1fZQoaAZoCWgPQwhxHHi13Jnrv5SGlFKUaBVLMmgWR0ClAliCaqjrdX2UKGgGaAloD0MId9hEZi5w3b+UhpRSlGgVSzJoFkdApQQnCyhSL3V9lChoBmgJaA9DCMRBQpQv6O+/lIaUUpRoFUsyaBZHQKUD7ZnL7oB1fZQoaAZoCWgPQwhntiv0wfLzv5SGlFKUaBVLMmgWR0ClA7Imw7kodX2UKGgGaAloD0MIZFxxcVQu9b+UhpRSlGgVSzJoFkdApQN240/GEXV9lChoBmgJaA9DCD4JbM7BM+K/lIaUUpRoFUsyaBZHQKUFPqgRK6F1fZQoaAZoCWgPQwgLl1XYDHDov5SGlFKUaBVLMmgWR0ClBQUcGTs6dX2UKGgGaAloD0MI1ZP5R98k9b+UhpRSlGgVSzJoFkdApQTJfa6BiHV9lChoBmgJaA9DCOjZrPpcbem/lIaUUpRoFUsyaBZHQKUEjiFTNt91fZQoaAZoCWgPQwjD9L2G4Ljuv5SGlFKUaBVLMmgWR0ClBmFtj0+UdX2UKGgGaAloD0MI7DL8pxso2r+UhpRSlGgVSzJoFkdApQYoAp8WsXV9lChoBmgJaA9DCJ+OxwxUhvK/lIaUUpRoFUsyaBZHQKUF7Vqesgd1fZQoaAZoCWgPQwjeWFAYlOnuv5SGlFKUaBVLMmgWR0ClBbIxYaHcdX2UKGgGaAloD0MIzGPNyCD34r+UhpRSlGgVSzJoFkdApQd1TBInSnV9lChoBmgJaA9DCCkJibSNv+q/lIaUUpRoFUsyaBZHQKUHO7f51vF1fZQoaAZoCWgPQwieI/JdSt3hv5SGlFKUaBVLMmgWR0ClBwBO58SgdX2UKGgGaAloD0MI8IgK1c3F7b+UhpRSlGgVSzJoFkdApQbEv9LpR3V9lChoBmgJaA9DCCCcTx2rlOW/lIaUUpRoFUsyaBZHQKUIqbx3FDR1fZQoaAZoCWgPQwiBCkeQSjHzv5SGlFKUaBVLMmgWR0ClCHA5BC2MdX2UKGgGaAloD0MIrMlTVtN147+UhpRSlGgVSzJoFkdApQg0vZh8Y3V9lChoBmgJaA9DCAdhbvdy3/G/lIaUUpRoFUsyaBZHQKUH+aqCHyp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (350 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6349810920422897, "std_reward": 0.15594934985810177, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T17:57:08.379288"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fa5d9b6ea37dae365ff88dda8faa436f98f0ba33d938921be92fb4cd9018abc
3
+ size 3056