Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.63 +/- 0.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce0f3afcf03b80a2c216b06d3e46484f8ed7aec45049c2701b3328dc8a12448c
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff16d19a550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7ff16d191a80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674751410903689750,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuUa0P6Jlmz8oArc/UuYbvijYkj55I1A+CUSzP1xS3L/yNSy/VhOgv/+clz+uXrK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]]",
|
60 |
+
"desired_goal": "[[ 1.4084083 1.2140391 1.4297533 ]\n [-0.15224579 0.2868054 0.20326032]\n [ 1.4005138 -1.7212634 -0.67269814]\n [-1.2505901 1.1844786 -1.3935144 ]]",
|
61 |
+
"observation": "[[ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU8QRvcaKET2/S209ynSivUOqKr2uIXM+fbyhvTeCR71DY4Y+DpmnvOOwjTzqD00+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.03558762 0.03553274 0.05793357]\n [-0.07932432 -0.04166628 0.23743317]\n [-0.07897279 -0.04870817 0.26247606]\n [-0.02045872 0.01729626 0.20025602]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO/4LBAHy+L+UhpRSlIwBbJRLMowBdJRHQKTuI84gieN1fZQoaAZoCWgPQwia6V4n9eXlv5SGlFKUaBVLMmgWR0Ck7epx3mmtdX2UKGgGaAloD0MIM4y7QbRW8L+UhpRSlGgVSzJoFkdApO2vAuZkTnV9lChoBmgJaA9DCLKFIAclzPG/lIaUUpRoFUsyaBZHQKTtc1Nxlxx1fZQoaAZoCWgPQwj2twTgnxIBwJSGlFKUaBVLMmgWR0Ck7y+EytV8dX2UKGgGaAloD0MI8UbmkT+Y57+UhpRSlGgVSzJoFkdApO71vddmhHV9lChoBmgJaA9DCHAnEeFfBOi/lIaUUpRoFUsyaBZHQKTuukE9t/F1fZQoaAZoCWgPQwjS30vhQbP7v5SGlFKUaBVLMmgWR0Ck7n7p/wy7dX2UKGgGaAloD0MI/dzQlJ0+9b+UhpRSlGgVSzJoFkdApPAyLwWnCXV9lChoBmgJaA9DCKd38X7cPvK/lIaUUpRoFUsyaBZHQKTv+KYRdyF1fZQoaAZoCWgPQwi14bA08GP8v5SGlFKUaBVLMmgWR0Ck77zmW+oMdX2UKGgGaAloD0MIEk4LXvSV9r+UhpRSlGgVSzJoFkdApO+BY5ksjHV9lChoBmgJaA9DCLEWnwJgPOi/lIaUUpRoFUsyaBZHQKTxPdDYywh1fZQoaAZoCWgPQwijPskdNlH6v5SGlFKUaBVLMmgWR0Ck8QROUMXrdX2UKGgGaAloD0MIbhXEQNc+87+UhpRSlGgVSzJoFkdApPDI3HaN/HV9lChoBmgJaA9DCOF+wAMDyPS/lIaUUpRoFUsyaBZHQKTwjZUT+Nt1fZQoaAZoCWgPQwjx2M9iKZLrv5SGlFKUaBVLMmgWR0Ck8kZjQRf4dX2UKGgGaAloD0MIpbxWQncJ8r+UhpRSlGgVSzJoFkdApPIM2tMfzXV9lChoBmgJaA9DCKN4lbVN8fa/lIaUUpRoFUsyaBZHQKTx0dz4k/t1fZQoaAZoCWgPQwiLTwEwnsHjv5SGlFKUaBVLMmgWR0Ck8ZcmKIi1dX2UKGgGaAloD0MIpGyRtBv977+UhpRSlGgVSzJoFkdApPNndyksSXV9lChoBmgJaA9DCGVyameYWuW/lIaUUpRoFUsyaBZHQKTzLfrKNhp1fZQoaAZoCWgPQwhr09heC/rkv5SGlFKUaBVLMmgWR0Ck8vJ84PwvdX2UKGgGaAloD0MIaM9lahI857+UhpRSlGgVSzJoFkdApPK3Dej2z3V9lChoBmgJaA9DCOp1i8BYn/G/lIaUUpRoFUsyaBZHQKT0hUZvUBp1fZQoaAZoCWgPQwhU5uYb0T3jv5SGlFKUaBVLMmgWR0Ck9EvPLPlddX2UKGgGaAloD0MIFf4Mb9bg4r+UhpRSlGgVSzJoFkdApPQQZ62OQ3V9lChoBmgJaA9DCNMzvcRYpuG/lIaUUpRoFUsyaBZHQKTz1Qqqfe11fZQoaAZoCWgPQwi9qx4wD1nzv5SGlFKUaBVLMmgWR0Ck9ZhLf1pTdX2UKGgGaAloD0MIhXzQs1l177+UhpRSlGgVSzJoFkdApPVexjawlnV9lChoBmgJaA9DCAKAY8+ei/e/lIaUUpRoFUsyaBZHQKT1Iz2vjfh1fZQoaAZoCWgPQwgzNnSzPxDyv5SGlFKUaBVLMmgWR0Ck9OfgaWHDdX2UKGgGaAloD0MIrg/rjVph3b+UhpRSlGgVSzJoFkdApPa9M/QjU3V9lChoBmgJaA9DCIC1ateEtOm/lIaUUpRoFUsyaBZHQKT2g6BAfMh1fZQoaAZoCWgPQwgVkPY/wFr+v5SGlFKUaBVLMmgWR0Ck9kgiml67dX2UKGgGaAloD0MIM40mF2Ng87+UhpRSlGgVSzJoFkdApPYNTBInSnV9lChoBmgJaA9DCNCbilQYW9m/lIaUUpRoFUsyaBZHQKT37bgTAWV1fZQoaAZoCWgPQwgtlExO7Qzgv5SGlFKUaBVLMmgWR0Ck97QrMC9zdX2UKGgGaAloD0MIjWK5pdWQ9L+UhpRSlGgVSzJoFkdApPd4tUXHinV9lChoBmgJaA9DCBixTwDFyOC/lIaUUpRoFUsyaBZHQKT3PVhkRSR1fZQoaAZoCWgPQwilu+tsyP8BwJSGlFKUaBVLMmgWR0Ck+SDcdo38dX2UKGgGaAloD0MIO8eA7PWu8b+UhpRSlGgVSzJoFkdApPjnQjUutnV9lChoBmgJaA9DCIYBS65iMfS/lIaUUpRoFUsyaBZHQKT4q4//vOR1fZQoaAZoCWgPQwhQqKePwJ/qv5SGlFKUaBVLMmgWR0Ck+HAs9SuRdX2UKGgGaAloD0MIWYY41sUt+b+UhpRSlGgVSzJoFkdApPo6O7xusXV9lChoBmgJaA9DCA1TW+og7/6/lIaUUpRoFUsyaBZHQKT6AKXOW0J1fZQoaAZoCWgPQwh48X7cfvnkv5SGlFKUaBVLMmgWR0Ck+cUhFEy+dX2UKGgGaAloD0MIVoMwt3v59L+UhpRSlGgVSzJoFkdApPmJuTA31nV9lChoBmgJaA9DCOj6PhwkROm/lIaUUpRoFUsyaBZHQKT7S60Y0l91fZQoaAZoCWgPQwglBKvq5ffuv5SGlFKUaBVLMmgWR0Ck+xJOnEVGdX2UKGgGaAloD0MIM2yU9ZuJ17+UhpRSlGgVSzJoFkdApPrW8kD6nHV9lChoBmgJaA9DCOvIkc7ASOO/lIaUUpRoFUsyaBZHQKT6m7mMfih1fZQoaAZoCWgPQwj5Tsx6MRTxv5SGlFKUaBVLMmgWR0Ck/GJyyUs4dX2UKGgGaAloD0MIStQLPs1J7b+UhpRSlGgVSzJoFkdApPwo8Md92HV9lChoBmgJaA9DCFZ9rrZif/G/lIaUUpRoFUsyaBZHQKT77XnyNGV1fZQoaAZoCWgPQwjFdCFWfwTpv5SGlFKUaBVLMmgWR0Ck+7JNTLntdX2UKGgGaAloD0MIjgHZ690f0L+UhpRSlGgVSzJoFkdApP18kfLcK3V9lChoBmgJaA9DCJboLLMIReK/lIaUUpRoFUsyaBZHQKT9QvxH5Jt1fZQoaAZoCWgPQwijPV5Ihwfxv5SGlFKUaBVLMmgWR0Ck/Qd9tuUEdX2UKGgGaAloD0MIsVHWbyam3L+UhpRSlGgVSzJoFkdApPzMKLKmsXV9lChoBmgJaA9DCNYBEHf16va/lIaUUpRoFUsyaBZHQKT+le9Ba9t1fZQoaAZoCWgPQwiS6GUUy23wv5SGlFKUaBVLMmgWR0Ck/lxkEs8QdX2UKGgGaAloD0MI4ba28LzU7L+UhpRSlGgVSzJoFkdApP4g3m3fAXV9lChoBmgJaA9DCOOON/ktOuy/lIaUUpRoFUsyaBZHQKT95XyRSxZ1fZQoaAZoCWgPQwh0RSkhWNX0v5SGlFKUaBVLMmgWR0Ck/64dIXj3dX2UKGgGaAloD0MIDjFe86rO+r+UhpRSlGgVSzJoFkdApP90qJ/G2nV9lChoBmgJaA9DCPp+arx0E+e/lIaUUpRoFUsyaBZHQKT/OT2WY4R1fZQoaAZoCWgPQwidLouJzcf2v5SGlFKUaBVLMmgWR0Ck/v3fyf+TdX2UKGgGaAloD0MIa5kMx/MZ87+UhpRSlGgVSzJoFkdApQDQKWszVXV9lChoBmgJaA9DCH/cfvlkxfe/lIaUUpRoFUsyaBZHQKUAlpudf9h1fZQoaAZoCWgPQwg0uoPYmcLvv5SGlFKUaBVLMmgWR0ClAFso2GZedX2UKGgGaAloD0MIAKq4cYv54r+UhpRSlGgVSzJoFkdApQAf29L6DXV9lChoBmgJaA9DCFggelImNe+/lIaUUpRoFUsyaBZHQKUB8Ox0MgF1fZQoaAZoCWgPQwhJufscH63sv5SGlFKUaBVLMmgWR0ClAbd+ocaPdX2UKGgGaAloD0MIvFzEd2JW+L+UhpRSlGgVSzJoFkdApQF8EvCdjHV9lChoBmgJaA9DCMJPHEC/7+e/lIaUUpRoFUsyaBZHQKUBQL6UJOZ1fZQoaAZoCWgPQwi7JqQ1Bp3sv5SGlFKUaBVLMmgWR0ClAwjaXa8IdX2UKGgGaAloD0MIqRJlbyln77+UhpRSlGgVSzJoFkdApQLPR9gF5nV9lChoBmgJaA9DCDNrKSDt/+u/lIaUUpRoFUsyaBZHQKUCk9YfW+Z1fZQoaAZoCWgPQwhxHHi13Jnrv5SGlFKUaBVLMmgWR0ClAliCaqjrdX2UKGgGaAloD0MId9hEZi5w3b+UhpRSlGgVSzJoFkdApQQnCyhSL3V9lChoBmgJaA9DCMRBQpQv6O+/lIaUUpRoFUsyaBZHQKUD7ZnL7oB1fZQoaAZoCWgPQwhntiv0wfLzv5SGlFKUaBVLMmgWR0ClA7Imw7kodX2UKGgGaAloD0MIZFxxcVQu9b+UhpRSlGgVSzJoFkdApQN240/GEXV9lChoBmgJaA9DCD4JbM7BM+K/lIaUUpRoFUsyaBZHQKUFPqgRK6F1fZQoaAZoCWgPQwgLl1XYDHDov5SGlFKUaBVLMmgWR0ClBQUcGTs6dX2UKGgGaAloD0MI1ZP5R98k9b+UhpRSlGgVSzJoFkdApQTJfa6BiHV9lChoBmgJaA9DCOjZrPpcbem/lIaUUpRoFUsyaBZHQKUEjiFTNt91fZQoaAZoCWgPQwjD9L2G4Ljuv5SGlFKUaBVLMmgWR0ClBmFtj0+UdX2UKGgGaAloD0MI7DL8pxso2r+UhpRSlGgVSzJoFkdApQYoAp8WsXV9lChoBmgJaA9DCJ+OxwxUhvK/lIaUUpRoFUsyaBZHQKUF7Vqesgd1fZQoaAZoCWgPQwjeWFAYlOnuv5SGlFKUaBVLMmgWR0ClBbIxYaHcdX2UKGgGaAloD0MIzGPNyCD34r+UhpRSlGgVSzJoFkdApQd1TBInSnV9lChoBmgJaA9DCCkJibSNv+q/lIaUUpRoFUsyaBZHQKUHO7f51vF1fZQoaAZoCWgPQwieI/JdSt3hv5SGlFKUaBVLMmgWR0ClBwBO58SgdX2UKGgGaAloD0MI8IgK1c3F7b+UhpRSlGgVSzJoFkdApQbEv9LpR3V9lChoBmgJaA9DCCCcTx2rlOW/lIaUUpRoFUsyaBZHQKUIqbx3FDR1fZQoaAZoCWgPQwiBCkeQSjHzv5SGlFKUaBVLMmgWR0ClCHA5BC2MdX2UKGgGaAloD0MIrMlTVtN147+UhpRSlGgVSzJoFkdApQg0vZh8Y3V9lChoBmgJaA9DCAdhbvdy3/G/lIaUUpRoFUsyaBZHQKUH+aqCHyp1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddcdeff62045e1e692413551c36fe4656e1a274c30be195454bf8be07448bffb
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a3ed50f8d82a67b184ae40155731a8c9a0221a9d9ff62dd56da95e7f570b1a9
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff16d19a550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff16d191a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674751410903689750, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/jbetPv2ydLtUtRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuUa0P6Jlmz8oArc/UuYbvijYkj55I1A+CUSzP1xS3L/yNSy/VhOgv/+clz+uXrK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyNt60+/bJ0u1S1Ej+vCrQ8RIZLu7L/kzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]\n [ 0.339291 -0.00373381 0.57307935]]", "desired_goal": "[[ 1.4084083 1.2140391 1.4297533 ]\n [-0.15224579 0.2868054 0.20326032]\n [ 1.4005138 -1.7212634 -0.67269814]\n [-1.2505901 1.1844786 -1.3935144 ]]", "observation": "[[ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]\n [ 0.339291 -0.00373381 0.57307935 0.02197775 -0.00310554 0.01806626]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU8QRvcaKET2/S209ynSivUOqKr2uIXM+fbyhvTeCR71DY4Y+DpmnvOOwjTzqD00+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03558762 0.03553274 0.05793357]\n [-0.07932432 -0.04166628 0.23743317]\n [-0.07897279 -0.04870817 0.26247606]\n [-0.02045872 0.01729626 0.20025602]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO/4LBAHy+L+UhpRSlIwBbJRLMowBdJRHQKTuI84gieN1fZQoaAZoCWgPQwia6V4n9eXlv5SGlFKUaBVLMmgWR0Ck7epx3mmtdX2UKGgGaAloD0MIM4y7QbRW8L+UhpRSlGgVSzJoFkdApO2vAuZkTnV9lChoBmgJaA9DCLKFIAclzPG/lIaUUpRoFUsyaBZHQKTtc1Nxlxx1fZQoaAZoCWgPQwj2twTgnxIBwJSGlFKUaBVLMmgWR0Ck7y+EytV8dX2UKGgGaAloD0MI8UbmkT+Y57+UhpRSlGgVSzJoFkdApO71vddmhHV9lChoBmgJaA9DCHAnEeFfBOi/lIaUUpRoFUsyaBZHQKTuukE9t/F1fZQoaAZoCWgPQwjS30vhQbP7v5SGlFKUaBVLMmgWR0Ck7n7p/wy7dX2UKGgGaAloD0MI/dzQlJ0+9b+UhpRSlGgVSzJoFkdApPAyLwWnCXV9lChoBmgJaA9DCKd38X7cPvK/lIaUUpRoFUsyaBZHQKTv+KYRdyF1fZQoaAZoCWgPQwi14bA08GP8v5SGlFKUaBVLMmgWR0Ck77zmW+oMdX2UKGgGaAloD0MIEk4LXvSV9r+UhpRSlGgVSzJoFkdApO+BY5ksjHV9lChoBmgJaA9DCLEWnwJgPOi/lIaUUpRoFUsyaBZHQKTxPdDYywh1fZQoaAZoCWgPQwijPskdNlH6v5SGlFKUaBVLMmgWR0Ck8QROUMXrdX2UKGgGaAloD0MIbhXEQNc+87+UhpRSlGgVSzJoFkdApPDI3HaN/HV9lChoBmgJaA9DCOF+wAMDyPS/lIaUUpRoFUsyaBZHQKTwjZUT+Nt1fZQoaAZoCWgPQwjx2M9iKZLrv5SGlFKUaBVLMmgWR0Ck8kZjQRf4dX2UKGgGaAloD0MIpbxWQncJ8r+UhpRSlGgVSzJoFkdApPIM2tMfzXV9lChoBmgJaA9DCKN4lbVN8fa/lIaUUpRoFUsyaBZHQKTx0dz4k/t1fZQoaAZoCWgPQwiLTwEwnsHjv5SGlFKUaBVLMmgWR0Ck8ZcmKIi1dX2UKGgGaAloD0MIpGyRtBv977+UhpRSlGgVSzJoFkdApPNndyksSXV9lChoBmgJaA9DCGVyameYWuW/lIaUUpRoFUsyaBZHQKTzLfrKNhp1fZQoaAZoCWgPQwhr09heC/rkv5SGlFKUaBVLMmgWR0Ck8vJ84PwvdX2UKGgGaAloD0MIaM9lahI857+UhpRSlGgVSzJoFkdApPK3Dej2z3V9lChoBmgJaA9DCOp1i8BYn/G/lIaUUpRoFUsyaBZHQKT0hUZvUBp1fZQoaAZoCWgPQwhU5uYb0T3jv5SGlFKUaBVLMmgWR0Ck9EvPLPlddX2UKGgGaAloD0MIFf4Mb9bg4r+UhpRSlGgVSzJoFkdApPQQZ62OQ3V9lChoBmgJaA9DCNMzvcRYpuG/lIaUUpRoFUsyaBZHQKTz1Qqqfe11fZQoaAZoCWgPQwi9qx4wD1nzv5SGlFKUaBVLMmgWR0Ck9ZhLf1pTdX2UKGgGaAloD0MIhXzQs1l177+UhpRSlGgVSzJoFkdApPVexjawlnV9lChoBmgJaA9DCAKAY8+ei/e/lIaUUpRoFUsyaBZHQKT1Iz2vjfh1fZQoaAZoCWgPQwgzNnSzPxDyv5SGlFKUaBVLMmgWR0Ck9OfgaWHDdX2UKGgGaAloD0MIrg/rjVph3b+UhpRSlGgVSzJoFkdApPa9M/QjU3V9lChoBmgJaA9DCIC1ateEtOm/lIaUUpRoFUsyaBZHQKT2g6BAfMh1fZQoaAZoCWgPQwgVkPY/wFr+v5SGlFKUaBVLMmgWR0Ck9kgiml67dX2UKGgGaAloD0MIM40mF2Ng87+UhpRSlGgVSzJoFkdApPYNTBInSnV9lChoBmgJaA9DCNCbilQYW9m/lIaUUpRoFUsyaBZHQKT37bgTAWV1fZQoaAZoCWgPQwgtlExO7Qzgv5SGlFKUaBVLMmgWR0Ck97QrMC9zdX2UKGgGaAloD0MIjWK5pdWQ9L+UhpRSlGgVSzJoFkdApPd4tUXHinV9lChoBmgJaA9DCBixTwDFyOC/lIaUUpRoFUsyaBZHQKT3PVhkRSR1fZQoaAZoCWgPQwilu+tsyP8BwJSGlFKUaBVLMmgWR0Ck+SDcdo38dX2UKGgGaAloD0MIO8eA7PWu8b+UhpRSlGgVSzJoFkdApPjnQjUutnV9lChoBmgJaA9DCIYBS65iMfS/lIaUUpRoFUsyaBZHQKT4q4//vOR1fZQoaAZoCWgPQwhQqKePwJ/qv5SGlFKUaBVLMmgWR0Ck+HAs9SuRdX2UKGgGaAloD0MIWYY41sUt+b+UhpRSlGgVSzJoFkdApPo6O7xusXV9lChoBmgJaA9DCA1TW+og7/6/lIaUUpRoFUsyaBZHQKT6AKXOW0J1fZQoaAZoCWgPQwh48X7cfvnkv5SGlFKUaBVLMmgWR0Ck+cUhFEy+dX2UKGgGaAloD0MIVoMwt3v59L+UhpRSlGgVSzJoFkdApPmJuTA31nV9lChoBmgJaA9DCOj6PhwkROm/lIaUUpRoFUsyaBZHQKT7S60Y0l91fZQoaAZoCWgPQwglBKvq5ffuv5SGlFKUaBVLMmgWR0Ck+xJOnEVGdX2UKGgGaAloD0MIM2yU9ZuJ17+UhpRSlGgVSzJoFkdApPrW8kD6nHV9lChoBmgJaA9DCOvIkc7ASOO/lIaUUpRoFUsyaBZHQKT6m7mMfih1fZQoaAZoCWgPQwj5Tsx6MRTxv5SGlFKUaBVLMmgWR0Ck/GJyyUs4dX2UKGgGaAloD0MIStQLPs1J7b+UhpRSlGgVSzJoFkdApPwo8Md92HV9lChoBmgJaA9DCFZ9rrZif/G/lIaUUpRoFUsyaBZHQKT77XnyNGV1fZQoaAZoCWgPQwjFdCFWfwTpv5SGlFKUaBVLMmgWR0Ck+7JNTLntdX2UKGgGaAloD0MIjgHZ690f0L+UhpRSlGgVSzJoFkdApP18kfLcK3V9lChoBmgJaA9DCJboLLMIReK/lIaUUpRoFUsyaBZHQKT9QvxH5Jt1fZQoaAZoCWgPQwijPV5Ihwfxv5SGlFKUaBVLMmgWR0Ck/Qd9tuUEdX2UKGgGaAloD0MIsVHWbyam3L+UhpRSlGgVSzJoFkdApPzMKLKmsXV9lChoBmgJaA9DCNYBEHf16va/lIaUUpRoFUsyaBZHQKT+le9Ba9t1fZQoaAZoCWgPQwiS6GUUy23wv5SGlFKUaBVLMmgWR0Ck/lxkEs8QdX2UKGgGaAloD0MI4ba28LzU7L+UhpRSlGgVSzJoFkdApP4g3m3fAXV9lChoBmgJaA9DCOOON/ktOuy/lIaUUpRoFUsyaBZHQKT95XyRSxZ1fZQoaAZoCWgPQwh0RSkhWNX0v5SGlFKUaBVLMmgWR0Ck/64dIXj3dX2UKGgGaAloD0MIDjFe86rO+r+UhpRSlGgVSzJoFkdApP90qJ/G2nV9lChoBmgJaA9DCPp+arx0E+e/lIaUUpRoFUsyaBZHQKT/OT2WY4R1fZQoaAZoCWgPQwidLouJzcf2v5SGlFKUaBVLMmgWR0Ck/v3fyf+TdX2UKGgGaAloD0MIa5kMx/MZ87+UhpRSlGgVSzJoFkdApQDQKWszVXV9lChoBmgJaA9DCH/cfvlkxfe/lIaUUpRoFUsyaBZHQKUAlpudf9h1fZQoaAZoCWgPQwg0uoPYmcLvv5SGlFKUaBVLMmgWR0ClAFso2GZedX2UKGgGaAloD0MIAKq4cYv54r+UhpRSlGgVSzJoFkdApQAf29L6DXV9lChoBmgJaA9DCFggelImNe+/lIaUUpRoFUsyaBZHQKUB8Ox0MgF1fZQoaAZoCWgPQwhJufscH63sv5SGlFKUaBVLMmgWR0ClAbd+ocaPdX2UKGgGaAloD0MIvFzEd2JW+L+UhpRSlGgVSzJoFkdApQF8EvCdjHV9lChoBmgJaA9DCMJPHEC/7+e/lIaUUpRoFUsyaBZHQKUBQL6UJOZ1fZQoaAZoCWgPQwi7JqQ1Bp3sv5SGlFKUaBVLMmgWR0ClAwjaXa8IdX2UKGgGaAloD0MIqRJlbyln77+UhpRSlGgVSzJoFkdApQLPR9gF5nV9lChoBmgJaA9DCDNrKSDt/+u/lIaUUpRoFUsyaBZHQKUCk9YfW+Z1fZQoaAZoCWgPQwhxHHi13Jnrv5SGlFKUaBVLMmgWR0ClAliCaqjrdX2UKGgGaAloD0MId9hEZi5w3b+UhpRSlGgVSzJoFkdApQQnCyhSL3V9lChoBmgJaA9DCMRBQpQv6O+/lIaUUpRoFUsyaBZHQKUD7ZnL7oB1fZQoaAZoCWgPQwhntiv0wfLzv5SGlFKUaBVLMmgWR0ClA7Imw7kodX2UKGgGaAloD0MIZFxxcVQu9b+UhpRSlGgVSzJoFkdApQN240/GEXV9lChoBmgJaA9DCD4JbM7BM+K/lIaUUpRoFUsyaBZHQKUFPqgRK6F1fZQoaAZoCWgPQwgLl1XYDHDov5SGlFKUaBVLMmgWR0ClBQUcGTs6dX2UKGgGaAloD0MI1ZP5R98k9b+UhpRSlGgVSzJoFkdApQTJfa6BiHV9lChoBmgJaA9DCOjZrPpcbem/lIaUUpRoFUsyaBZHQKUEjiFTNt91fZQoaAZoCWgPQwjD9L2G4Ljuv5SGlFKUaBVLMmgWR0ClBmFtj0+UdX2UKGgGaAloD0MI7DL8pxso2r+UhpRSlGgVSzJoFkdApQYoAp8WsXV9lChoBmgJaA9DCJ+OxwxUhvK/lIaUUpRoFUsyaBZHQKUF7Vqesgd1fZQoaAZoCWgPQwjeWFAYlOnuv5SGlFKUaBVLMmgWR0ClBbIxYaHcdX2UKGgGaAloD0MIzGPNyCD34r+UhpRSlGgVSzJoFkdApQd1TBInSnV9lChoBmgJaA9DCCkJibSNv+q/lIaUUpRoFUsyaBZHQKUHO7f51vF1fZQoaAZoCWgPQwieI/JdSt3hv5SGlFKUaBVLMmgWR0ClBwBO58SgdX2UKGgGaAloD0MI8IgK1c3F7b+UhpRSlGgVSzJoFkdApQbEv9LpR3V9lChoBmgJaA9DCCCcTx2rlOW/lIaUUpRoFUsyaBZHQKUIqbx3FDR1fZQoaAZoCWgPQwiBCkeQSjHzv5SGlFKUaBVLMmgWR0ClCHA5BC2MdX2UKGgGaAloD0MIrMlTVtN147+UhpRSlGgVSzJoFkdApQg0vZh8Y3V9lChoBmgJaA9DCAdhbvdy3/G/lIaUUpRoFUsyaBZHQKUH+aqCHyp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (350 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6349810920422897, "std_reward": 0.15594934985810177, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T17:57:08.379288"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fa5d9b6ea37dae365ff88dda8faa436f98f0ba33d938921be92fb4cd9018abc
|
3 |
+
size 3056
|