--- tags: - merge - mergekit - lazymergekit - flemmingmiguel/NeuDist-Ro-7B - Blizado/discolm-mfto-7b-german-v0.1 - ResplendentAI/Flora_DPO_7B base_model: - flemmingmiguel/NeuDist-Ro-7B - Blizado/discolm-mfto-7b-german-v0.1 - ResplendentAI/Flora_DPO_7B license: cc-by-sa-4.0 --- # Spaetzle-v12-7b Spaetzle-v12-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B) * [Blizado/discolm-mfto-7b-german-v0.1](https://huggingface.co/Blizado/discolm-mfto-7b-german-v0.1) * [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B) * on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser) As expected, this is a little bit worse in general English tasks over Spaetzle-v12-7b, but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de) score of 64.81, but only | Metric |Value| |---------------------------------|----:| |Avg. |69.36| |AI2 Reasoning Challenge (25-Shot)|65.96| |HellaSwag (10-Shot) |86.16| |MMLU (5-Shot) |63.48| |TruthfulQA (0-shot) |57.84| |Winogrande (5-shot) |80.03| |GSM8k (5-shot) |62.70| ## 🧩 Configuration ```yaml models: - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser # no parameters necessary for base model - model: flemmingmiguel/NeuDist-Ro-7B parameters: density: 0.60 weight: 0.30 - model: Blizado/discolm-mfto-7b-german-v0.1 parameters: density: 0.65 weight: 0.40 - model: ResplendentAI/Flora_DPO_7B parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser parameters: int8_mask: true dtype: bfloat16 random_seed: 0 tokenizer_source: base ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "cstr/Spaetzle-v12-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```