File size: 5,595 Bytes
d3c37c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e641b
d3c37c8
 
 
 
 
 
51e641b
d3c37c8
 
 
51e641b
d3c37c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Introduction

This repo contains pre-trained model using
<https://github.com/k2-fsa/icefall/pull/213>.

It is trained on train-clean-100 subset of the LibriSpeech dataset.
Also, it uses the `S` subset from GigaSpeech as extra training data.

## How to clone this repo
```
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21

cd icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21
git lfs pull
```

**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.

The model in this repo is trained using the commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`.

You can use

```
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc
```
to download `icefall`.

You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/2332ba312d7ce72f08c7bac1e3312f7e3dd722dc/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py#L198>.

In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2.

The decoder architecture is modified from
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
A Conv1d layer is placed right after the input embedding layer.

-----

## Description

This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
and contains only an embedding layer and a Conv1d.

The commands for training are:

```
cd egs/librispeech/ASR/
./prepare.sh
./prepare_giga_speech.sh

export CUDA_VISIBLE_DEVICES="0,1"

./transducer_stateless_multi_datasets/train.py \
  --world-size 2 \
  --num-epochs 60 \
  --start-epoch 0 \
  --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
  --full-libri 0 \
  --max-duration 300 \
  --lr-factor 1 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --modified-transducer-prob 0.25
  --giga-prob 0.2
```

The tensorboard training log can be found at
<https://tensorboard.dev/experiment/qUEKzMnrTZmOz1EXPda9RA/>

The command for decoding is:
```
epoch=57
avg=17

## greedy search
for epoch in 57; do
  for avg in 17; do
    for sym in 1 2 3; do
    ./transducer_stateless_multi_datasets/decode.py \
      --epoch $epoch \
      --avg $avg \
      --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
      --bpe-model ./data/lang_bpe_500/bpe.model \
      --max-duration 100 \
      --context-size 2 \
      --max-sym-per-frame $sym
    done
  done
done

## modified beam search

epoch=57
avg=17
./transducer_stateless_multi_datasets/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100 \
  --context-size 2 \
  --decoding-method modified_beam_search \
  --beam-size 4
```

You can find the decoding log for the above command in this
repo (in the folder `log`).

The WERs for the test datasets are

|                                     | test-clean | test-other | comment                                  |
|-------------------------------------|------------|------------|------------------------------------------|
| greedy search (max sym per frame 1) | 6.34       | 16.7       | --epoch 57, --avg 17, --max-duration 100 |
| greedy search (max sym per frame 2) | 6.34       | 16.7       | --epoch 57, --avg 17, --max-duration 100 |
| greedy search (max sym per frame 3) | 6.34       | 16.7       | --epoch 57, --avg 17, --max-duration 100 |
| modified beam search (beam size 4)  | 6.31       | 16.3       | --epoch 57, --avg 17, --max-duration 100 |


# File description

- [log][log], this directory contains the decoding log and decoding results
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
- [data][data], this directory contains files generated by [prepare.sh][prepare]
- [exp][exp], this directory contains only one file: `preprained.pt`

`exp/pretrained.pt` is generated by the following command:

```bash
./transducer_stateless_multi_datasets/export.py \
  --epoch 57 \
  --avg 17 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --exp-dir transducer_stateless_multi_datasets/exp-full
```

**HINT**: To use `pretrained.pt` to compute the WER for test-clean and test-other,
just do the following:
```
cp icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
  /path/to/icefall/egs/librispeech/ASR/transducer_stateless_multi_datasets/exp/epoch-999.pt
```
and pass `--epoch 999 --avg 1` to `transducer_stateless_multi_datasets/decode.py`.


[icefall]: https://github.com/k2-fsa/icefall
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh
[exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/exp
[data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/data
[test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/test_wavs
[log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/log
[icefall]: https://github.com/k2-fsa/icefall