File size: 10,720 Bytes
477da44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import numpy as np
from rknn.api import RKNN

OBJ_THRESH = 0.25
NMS_THRESH = 0.45
MODEL_IN_SIZE = (640, 640)

CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
           "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
           "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
           "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
           "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
           "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop	","mouse	","remote ","keyboard ","cell phone","microwave ",
           "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")

coco_id_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
         35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
         64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]

class cstSigmoid:
    # custom operator cstSigmoid
    op_type = 'cstSigmoid'
    def shape_infer(self, node, in_shapes, in_dtypes):
        return in_shapes.copy(), in_dtypes.copy()
    def compute(self, node, inputs):
        return [1.0 / (1.0 + np.exp(np.negative(inputs[0])))]

class Letter_Box_Info():
    def __init__(self, shape, new_shape, w_ratio, h_ratio, dw, dh, pad_color) -> None:
        self.origin_shape = shape
        self.new_shape = new_shape
        self.w_ratio = w_ratio
        self.h_ratio = h_ratio
        self.dw = dw 
        self.dh = dh
        self.pad_color = pad_color

def filter_boxes(boxes, box_confidences, box_class_probs):
    """Filter boxes with object threshold.
    """
    box_confidences = box_confidences.reshape(-1)
    candidate, class_num = box_class_probs.shape

    class_max_score = np.max(box_class_probs, axis=-1)
    classes = np.argmax(box_class_probs, axis=-1)

    _class_pos = np.where(class_max_score* box_confidences >= OBJ_THRESH)
    scores = (class_max_score* box_confidences)[_class_pos]

    boxes = boxes[_class_pos]
    classes = classes[_class_pos]

    return boxes, classes, scores

def nms_boxes(boxes, scores):
    """Suppress non-maximal boxes.
    # Returns
        keep: ndarray, index of effective boxes.
    """
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]

    areas = w * h
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])

        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1

        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep

def box_process(position):
    grid_h, grid_w = position.shape[2:4]
    col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))
    col = col.reshape(1, 1, grid_h, grid_w)
    row = row.reshape(1, 1, grid_h, grid_w)
    grid = np.concatenate((col, row), axis=1)
    stride = np.array([MODEL_IN_SIZE[1]//grid_h, MODEL_IN_SIZE[0]//grid_w]).reshape(1,2,1,1)

    box_xy = position[:,:2,:,:]
    box_wh = np.exp(position[:,2:4,:,:]) * stride

    box_xy += grid
    box_xy *= stride
    box = np.concatenate((box_xy, box_wh), axis=1)

    # Convert [c_x, c_y, w, h] to [x1, y1, x2, y2]
    xyxy = np.copy(box)
    xyxy[:, 0, :, :] = box[:, 0, :, :] - box[:, 2, :, :]/ 2  # top left x
    xyxy[:, 1, :, :] = box[:, 1, :, :] - box[:, 3, :, :]/ 2  # top left y
    xyxy[:, 2, :, :] = box[:, 0, :, :] + box[:, 2, :, :]/ 2  # bottom right x
    xyxy[:, 3, :, :] = box[:, 1, :, :] + box[:, 3, :, :]/ 2  # bottom right y

    return xyxy

def post_process(input_data):
    boxes, scores, classes_conf = [], [], []

    input_data = [_in.reshape([1, -1]+list(_in.shape[-2:])) for _in in input_data]
    for i in range(len(input_data)):
        boxes.append(box_process(input_data[i][:,:4,:,:]))
        scores.append(input_data[i][:,4:5,:,:])
        classes_conf.append(input_data[i][:,5:,:,:])

    def sp_flatten(_in):
        ch = _in.shape[1]
        _in = _in.transpose(0,2,3,1)
        return _in.reshape(-1, ch)

    boxes = [sp_flatten(_v) for _v in boxes]
    classes_conf = [sp_flatten(_v) for _v in classes_conf]
    scores = [sp_flatten(_v) for _v in scores]

    boxes = np.concatenate(boxes)
    classes_conf = np.concatenate(classes_conf)
    scores = np.concatenate(scores)

    # filter according to threshold
    boxes, classes, scores = filter_boxes(boxes, scores, classes_conf)

    # nms
    nboxes, nclasses, nscores = [], [], []
    keep = nms_boxes(boxes, scores)
    if len(keep) != 0:
        nboxes.append(boxes[keep])
        nclasses.append(classes[keep])
        nscores.append(scores[keep])

    if not nclasses and not nscores:
        return None, None, None

    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)

    return boxes, classes, scores

def draw(image, boxes, scores, classes):
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = [int(_b) for _b in box]
        print('class: {}, score: {}'.format(CLASSES[cl], score))
        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))

        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left - 6),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)

def letter_box(im, new_shape, pad_color=(0,0,0)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio
    h_ratio = new_shape[0] / shape[0]
    w_ratio = new_shape[1] / shape[1]
    r = min(h_ratio, w_ratio)

    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=pad_color)  # add border

    letter_box_info = Letter_Box_Info(shape, new_shape, w_ratio, h_ratio, dw, dh, pad_color)        
    return im, letter_box_info

def get_real_box(box, letter_box_info, in_format='xyxy'):
    from copy import copy
    bbox = copy(box)
    # unletter_box result
    bbox[:,0] -= letter_box_info.dw
    bbox[:,0] /= letter_box_info.w_ratio
    bbox[:,0] = np.clip(bbox[:,0], 0, letter_box_info.origin_shape[1])

    bbox[:,1] -= letter_box_info.dh
    bbox[:,1] /= letter_box_info.h_ratio
    bbox[:,1] = np.clip(bbox[:,1], 0, letter_box_info.origin_shape[0])

    bbox[:,2] -= letter_box_info.dw
    bbox[:,2] /= letter_box_info.w_ratio
    bbox[:,2] = np.clip(bbox[:,2], 0, letter_box_info.origin_shape[1])

    bbox[:,3] -= letter_box_info.dh
    bbox[:,3] /= letter_box_info.h_ratio
    bbox[:,3] = np.clip(bbox[:,3], 0, letter_box_info.origin_shape[0])

    return bbox

def edit_onnx(in_model, output_model):
    # Here, take OP Sigmoid as an example. Users can replace any OP with their own custom OP in ONNX model.
    import onnx
    model = onnx.load(in_model)
    for node in model.graph.node:
        if node.op_type == "Sigmoid":
            node.op_type = "cstSigmoid"
    onnx.save(model, output_model)


if __name__ == '__main__':

    model_path = 'yolox_s.onnx'
    custom_model_path = 'yolox_s_custom.onnx'
    edit_onnx(model_path, custom_model_path)

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # Pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[1, 1, 1]], target_platform='rk3588')
    print('done')

    # Register cstSigmoid op
    print('--> Register cstSigmoid op')
    ret = rknn.reg_custom_op(cstSigmoid())
    if ret != 0:
        print('Register cstSigmoid op failed!')
        exit(ret)
    print('done')

    # Load model
    print('--> Loading model')
    ret = rknn.load_onnx(model=custom_model_path, input_size_list=[[1, 3, MODEL_IN_SIZE[1], MODEL_IN_SIZE[0]]])
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='dataset.txt')
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export rknn model')
    ret = rknn.export_rknn('yolox_s_custom.rknn')
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Init runtime
    print('--> Init runtime')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime failed!')
        exit(ret)
    print('done')

    # Get input data
    import cv2
    img_src = cv2.imread('bus.jpg')
    img, letter_box_info = letter_box(im=img_src.copy(), new_shape=(MODEL_IN_SIZE[1], MODEL_IN_SIZE[0]))
    print(letter_box_info)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Simulator inference
    print('--> Inference model')
    outputs = rknn.inference(inputs=[img])
    np.save('./functions_custom_op_non-onnx_standard_0.npy', outputs[0])
    np.save('./functions_custom_op_non-onnx_standard_1.npy', outputs[1])
    np.save('./functions_custom_op_non-onnx_standard_2.npy', outputs[2])

    boxes, classes, scores = post_process(outputs)

    img_p = img_src.copy()
    if boxes is not None:
        draw(img_p, get_real_box(boxes, letter_box_info), scores, classes)
    cv2.imwrite('result.jpg', img_p)
    print('Save results to result.jpg!')

    # Release
    rknn.release()