File size: 10,720 Bytes
477da44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import numpy as np
from rknn.api import RKNN
OBJ_THRESH = 0.25
NMS_THRESH = 0.45
MODEL_IN_SIZE = (640, 640)
CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
"fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
"bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
"baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
"spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
"pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
"oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
coco_id_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
class cstSigmoid:
# custom operator cstSigmoid
op_type = 'cstSigmoid'
def shape_infer(self, node, in_shapes, in_dtypes):
return in_shapes.copy(), in_dtypes.copy()
def compute(self, node, inputs):
return [1.0 / (1.0 + np.exp(np.negative(inputs[0])))]
class Letter_Box_Info():
def __init__(self, shape, new_shape, w_ratio, h_ratio, dw, dh, pad_color) -> None:
self.origin_shape = shape
self.new_shape = new_shape
self.w_ratio = w_ratio
self.h_ratio = h_ratio
self.dw = dw
self.dh = dh
self.pad_color = pad_color
def filter_boxes(boxes, box_confidences, box_class_probs):
"""Filter boxes with object threshold.
"""
box_confidences = box_confidences.reshape(-1)
candidate, class_num = box_class_probs.shape
class_max_score = np.max(box_class_probs, axis=-1)
classes = np.argmax(box_class_probs, axis=-1)
_class_pos = np.where(class_max_score* box_confidences >= OBJ_THRESH)
scores = (class_max_score* box_confidences)[_class_pos]
boxes = boxes[_class_pos]
classes = classes[_class_pos]
return boxes, classes, scores
def nms_boxes(boxes, scores):
"""Suppress non-maximal boxes.
# Returns
keep: ndarray, index of effective boxes.
"""
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= NMS_THRESH)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def box_process(position):
grid_h, grid_w = position.shape[2:4]
col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))
col = col.reshape(1, 1, grid_h, grid_w)
row = row.reshape(1, 1, grid_h, grid_w)
grid = np.concatenate((col, row), axis=1)
stride = np.array([MODEL_IN_SIZE[1]//grid_h, MODEL_IN_SIZE[0]//grid_w]).reshape(1,2,1,1)
box_xy = position[:,:2,:,:]
box_wh = np.exp(position[:,2:4,:,:]) * stride
box_xy += grid
box_xy *= stride
box = np.concatenate((box_xy, box_wh), axis=1)
# Convert [c_x, c_y, w, h] to [x1, y1, x2, y2]
xyxy = np.copy(box)
xyxy[:, 0, :, :] = box[:, 0, :, :] - box[:, 2, :, :]/ 2 # top left x
xyxy[:, 1, :, :] = box[:, 1, :, :] - box[:, 3, :, :]/ 2 # top left y
xyxy[:, 2, :, :] = box[:, 0, :, :] + box[:, 2, :, :]/ 2 # bottom right x
xyxy[:, 3, :, :] = box[:, 1, :, :] + box[:, 3, :, :]/ 2 # bottom right y
return xyxy
def post_process(input_data):
boxes, scores, classes_conf = [], [], []
input_data = [_in.reshape([1, -1]+list(_in.shape[-2:])) for _in in input_data]
for i in range(len(input_data)):
boxes.append(box_process(input_data[i][:,:4,:,:]))
scores.append(input_data[i][:,4:5,:,:])
classes_conf.append(input_data[i][:,5:,:,:])
def sp_flatten(_in):
ch = _in.shape[1]
_in = _in.transpose(0,2,3,1)
return _in.reshape(-1, ch)
boxes = [sp_flatten(_v) for _v in boxes]
classes_conf = [sp_flatten(_v) for _v in classes_conf]
scores = [sp_flatten(_v) for _v in scores]
boxes = np.concatenate(boxes)
classes_conf = np.concatenate(classes_conf)
scores = np.concatenate(scores)
# filter according to threshold
boxes, classes, scores = filter_boxes(boxes, scores, classes_conf)
# nms
nboxes, nclasses, nscores = [], [], []
keep = nms_boxes(boxes, scores)
if len(keep) != 0:
nboxes.append(boxes[keep])
nclasses.append(classes[keep])
nscores.append(scores[keep])
if not nclasses and not nscores:
return None, None, None
boxes = np.concatenate(nboxes)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)
return boxes, classes, scores
def draw(image, boxes, scores, classes):
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = [int(_b) for _b in box]
print('class: {}, score: {}'.format(CLASSES[cl], score))
print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
(top, left - 6),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 2)
def letter_box(im, new_shape, pad_color=(0,0,0)):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio
h_ratio = new_shape[0] / shape[0]
w_ratio = new_shape[1] / shape[1]
r = min(h_ratio, w_ratio)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=pad_color) # add border
letter_box_info = Letter_Box_Info(shape, new_shape, w_ratio, h_ratio, dw, dh, pad_color)
return im, letter_box_info
def get_real_box(box, letter_box_info, in_format='xyxy'):
from copy import copy
bbox = copy(box)
# unletter_box result
bbox[:,0] -= letter_box_info.dw
bbox[:,0] /= letter_box_info.w_ratio
bbox[:,0] = np.clip(bbox[:,0], 0, letter_box_info.origin_shape[1])
bbox[:,1] -= letter_box_info.dh
bbox[:,1] /= letter_box_info.h_ratio
bbox[:,1] = np.clip(bbox[:,1], 0, letter_box_info.origin_shape[0])
bbox[:,2] -= letter_box_info.dw
bbox[:,2] /= letter_box_info.w_ratio
bbox[:,2] = np.clip(bbox[:,2], 0, letter_box_info.origin_shape[1])
bbox[:,3] -= letter_box_info.dh
bbox[:,3] /= letter_box_info.h_ratio
bbox[:,3] = np.clip(bbox[:,3], 0, letter_box_info.origin_shape[0])
return bbox
def edit_onnx(in_model, output_model):
# Here, take OP Sigmoid as an example. Users can replace any OP with their own custom OP in ONNX model.
import onnx
model = onnx.load(in_model)
for node in model.graph.node:
if node.op_type == "Sigmoid":
node.op_type = "cstSigmoid"
onnx.save(model, output_model)
if __name__ == '__main__':
model_path = 'yolox_s.onnx'
custom_model_path = 'yolox_s_custom.onnx'
edit_onnx(model_path, custom_model_path)
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[[0, 0, 0]], std_values=[[1, 1, 1]], target_platform='rk3588')
print('done')
# Register cstSigmoid op
print('--> Register cstSigmoid op')
ret = rknn.reg_custom_op(cstSigmoid())
if ret != 0:
print('Register cstSigmoid op failed!')
exit(ret)
print('done')
# Load model
print('--> Loading model')
ret = rknn.load_onnx(model=custom_model_path, input_size_list=[[1, 3, MODEL_IN_SIZE[1], MODEL_IN_SIZE[0]]])
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='dataset.txt')
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('yolox_s_custom.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Init runtime
print('--> Init runtime')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime failed!')
exit(ret)
print('done')
# Get input data
import cv2
img_src = cv2.imread('bus.jpg')
img, letter_box_info = letter_box(im=img_src.copy(), new_shape=(MODEL_IN_SIZE[1], MODEL_IN_SIZE[0]))
print(letter_box_info)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Simulator inference
print('--> Inference model')
outputs = rknn.inference(inputs=[img])
np.save('./functions_custom_op_non-onnx_standard_0.npy', outputs[0])
np.save('./functions_custom_op_non-onnx_standard_1.npy', outputs[1])
np.save('./functions_custom_op_non-onnx_standard_2.npy', outputs[2])
boxes, classes, scores = post_process(outputs)
img_p = img_src.copy()
if boxes is not None:
draw(img_p, get_real_box(boxes, letter_box_info), scores, classes)
cv2.imwrite('result.jpg', img_p)
print('Save results to result.jpg!')
# Release
rknn.release()
|