File size: 3,658 Bytes
477da44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import cv2
from rknn.api import RKNN


def show_outputs(outputs):
    output_ = outputs[0].reshape((-1, 1000))
    fp = open('./labels.txt', 'r')
    labels = fp.readlines()
    for output in output_:
        index = sorted(range(len(output)), key=lambda k : output[k], reverse=True)
        top5_str = '-----TOP 5-----\n'
        for i in range(5):
            value = output[index[i]]
            if value > 0:
                topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1])
            else:
                topi = '[ -1]: 0.0\n'
            top5_str += topi
        print(top5_str.strip())


def show_perfs(perfs):
    perfs = 'perfs: {}\n'.format(outputs)
    print(perfs)


if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # The multiple sets of input shapes specified by the user, to simulate the function of dynamic input.
    # Please make sure the model can be dynamic when enable 'config.dynamic_input', and shape in dynamic_input are correctly!
    dynamic_input = [
        [[1,3,256,256]],    # set 1: [input0_256]
        [[1,3,160,160]],    # set 2: [input0_160]
        [[1,3,224,224]],    # set 3: [input0_224]
    ]

    # Pre-process config
    print('--> Config model')
    rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566', dynamic_input=dynamic_input)
    print('done')

    # Load model (from https://github.com/shicai/MobileNet-Caffe)
    print('--> Loading model')
    ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt',
                          blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel')
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='../../caffe/mobilenet_v2/dataset.txt')
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export rknn model')
    ret = rknn.export_rknn('./mobilenet_v2.rknn')
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    # Set inputs
    img = cv2.imread('./dog_224x224.jpg')

    # Inference
    print('\n--> Running model with input shape [1,3,224,224]')
    img2 = cv2.resize(img, (224,224))
    img2 = np.expand_dims(img2, 0)
    img2 = np.transpose(img2, (0,3,1,2))    # [1,3,224,224]
    outputs = rknn.inference(inputs=[img2], data_format=['nchw'])
    np.save('./functions_dynamic_shape_0.npy', outputs[0])
    show_outputs(outputs)

    print('--> Running model with input shape [1,3,160,160]')
    img3 = cv2.resize(img, (160,160))
    img3 = np.expand_dims(img3, 0)
    img3 = np.transpose(img3, (0,3,1,2))    # [1,3,160,160]
    outputs = rknn.inference(inputs=[img3], data_format=['nchw'])
    np.save('./functions_dynamic_shape_1.npy', outputs[0])
    show_outputs(outputs)

    print('--> Running model with input shape [1,3,256,256]')
    img4 = cv2.resize(img, (256,256))
    img4 = np.expand_dims(img4, 0)
    img4 = np.transpose(img4, (0,3,1,2))    # [1,3,256,256]
    outputs = rknn.inference(inputs=[img4], data_format=['nchw'])
    np.save('./functions_dynamic_shape_2.npy', outputs[0])
    show_outputs(outputs)

    print('done')

    rknn.release()