File size: 2,083 Bytes
477da44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
The directory structure of examples is as follows: . βββ caffe β βββ mobilenet_v2 # mobilenet_v2 float model β βββ vgg-ssd # vgg-ssd float model βββ onnx β βββ resnet50v2 # resnet50v2 float model β βββ yolov5 # yolov5 float model βββ pytorch β βββ resnet18 # resnet18 float model β βββ resnet18_qat # resnet18 QAT model β βββ resnet18_export_onnx # how to export onnx model from pytorch β βββ yolov5 # yolov5 float model βββ tensorflow β βββ ssd_mobilenet_v1 # ssd_mobilenet_v1 float model β βββ inception_v3_qat # inception_v3 QAT model βββ tflite β βββ mobilenet_v1 # mobilenet_v1 float model β βββ mobilenet_v1_qat # mobilenet_v1 QAT model βββ darknet β βββ yolov3_416x416 # yolov3 float model βββ functions βββ accuracy_analysis # how to use accuracy-analysis function βββ codegen # how to generate c++ deployment demo when converting model βββ custom_op # How to use custom_op function βββ dynamic_shape # how to use dynamic shape function βββ hybrid_quant # how to use hybrid-quantization function βββ model_pruning # how to use model_pruning function βββ multi_batch # how to expand batch for use multi-batch function βββ multi_input # How to convert multi-input model βββ npu_device_test # how to test npu device by connect the board βββ onnx_edit # how to use onnx_edit function βββ quantize_algorithm_mmse # how to use MMSE quantize algorithm |