File size: 7,001 Bytes
477da44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*-------------------------------------------
Includes
-------------------------------------------*/
#include "opencv2/core/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "rknn_api.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <fstream>
#include <iostream>
using namespace std;
using namespace cv;
/*-------------------------------------------
Functions
-------------------------------------------*/
static void dump_tensor_attr(rknn_tensor_attr* attr)
{
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
static unsigned char* load_model(const char* filename, int* model_size)
{
FILE* fp = fopen(filename, "rb");
if (fp == nullptr) {
printf("fopen %s fail!\n", filename);
return NULL;
}
fseek(fp, 0, SEEK_END);
int model_len = ftell(fp);
unsigned char* model = (unsigned char*)malloc(model_len);
fseek(fp, 0, SEEK_SET);
if (model_len != fread(model, 1, model_len, fp)) {
printf("fread %s fail!\n", filename);
free(model);
return NULL;
}
*model_size = model_len;
if (fp) {
fclose(fp);
}
return model;
}
static int rknn_GetTop(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
{
uint32_t i, j;
#define MAX_TOP_NUM 20
if (topNum > MAX_TOP_NUM)
return 0;
memset(pfMaxProb, 0, sizeof(float) * topNum);
memset(pMaxClass, 0xff, sizeof(float) * topNum);
for (j = 0; j < topNum; j++) {
for (i = 0; i < outputCount; i++) {
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
(i == *(pMaxClass + 4))) {
continue;
}
if (pfProb[i] > *(pfMaxProb + j)) {
*(pfMaxProb + j) = pfProb[i];
*(pMaxClass + j) = i;
}
}
}
return 1;
}
/*-------------------------------------------
Main Function
-------------------------------------------*/
int main(int argc, char** argv)
{
const int MODEL_IN_WIDTH = 224;
const int MODEL_IN_HEIGHT = 224;
const int MODEL_IN_CHANNELS = 3;
rknn_context ctx = 0;
int ret;
int model_len = 0;
unsigned char* model;
const char* model_path = argv[1];
const char* img_path = argv[2];
if (argc != 3) {
printf("Usage: %s <rknn model> <image_path> \n", argv[0]);
return -1;
}
// Load image
cv::Mat orig_img = imread(img_path, cv::IMREAD_COLOR);
if (!orig_img.data) {
printf("cv::imread %s fail!\n", img_path);
return -1;
}
cv::Mat orig_img_rgb;
//rknn模型说明来源于RKNN-Toolkit2的的examples/tflite/mobilenet_v1示例,输入通道顺序与python代码保持一致
cv::cvtColor(orig_img, orig_img_rgb, cv::COLOR_BGR2RGB);
cv::Mat img = orig_img_rgb.clone();
if (orig_img.cols != MODEL_IN_WIDTH || orig_img.rows != MODEL_IN_HEIGHT) {
printf("resize %d %d to %d %d\n", orig_img.cols, orig_img.rows, MODEL_IN_WIDTH, MODEL_IN_HEIGHT);
cv::resize(orig_img_rgb, img, cv::Size(MODEL_IN_WIDTH, MODEL_IN_HEIGHT), 0, 0, cv::INTER_LINEAR);
}
// Load RKNN Model
model = load_model(model_path, &model_len);
ret = rknn_init(&ctx, model, model_len, 0, NULL);
if (ret < 0) {
printf("rknn_init fail! ret=%d\n", ret);
return -1;
}
// Get Model Input Output Info
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
printf("input tensors:\n");
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, sizeof(input_attrs));
for (int i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&(input_attrs[i]));
}
printf("output tensors:\n");
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, sizeof(output_attrs));
for (int i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&(output_attrs[i]));
}
// Set Input Data
rknn_input inputs[1];
memset(inputs, 0, sizeof(inputs));
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = img.cols * img.rows * img.channels() * sizeof(uint8_t);
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].buf = img.data;
ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
if (ret < 0) {
printf("rknn_input_set fail! ret=%d\n", ret);
return -1;
}
// Run
printf("rknn_run\n");
ret = rknn_run(ctx, nullptr);
if (ret < 0) {
printf("rknn_run fail! ret=%d\n", ret);
return -1;
}
// Get Output
rknn_output outputs[1];
memset(outputs, 0, sizeof(outputs));
outputs[0].want_float = 1;
ret = rknn_outputs_get(ctx, 1, outputs, NULL);
if (ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
return -1;
}
// Post Process
for (int i = 0; i < io_num.n_output; i++) {
uint32_t MaxClass[5];
float fMaxProb[5];
float* buffer = (float*)outputs[i].buf;
uint32_t sz = outputs[i].size / 4;
rknn_GetTop(buffer, fMaxProb, MaxClass, sz, 5);
printf(" --- Top5 ---\n");
for (int i = 0; i < 5; i++) {
printf("%3d: %8.6f\n", MaxClass[i], fMaxProb[i]);
}
}
// Release rknn_outputs
rknn_outputs_release(ctx, 1, outputs);
// Release
if (ctx > 0)
{
rknn_destroy(ctx);
}
if (model) {
free(model);
}
return 0;
}
|