File size: 7,827 Bytes
477da44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*-------------------------------------------
Includes
-------------------------------------------*/
#include "rknn_api.h"
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <string>
#include <vector>
/*-------------------------------------------
Functions
-------------------------------------------*/
static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
{
uint32_t i, j;
uint32_t top_count = outputCount > topNum ? topNum : outputCount;
for (i = 0; i < topNum; ++i) {
pfMaxProb[i] = -FLT_MAX;
pMaxClass[i] = -1;
}
for (j = 0; j < top_count; j++) {
for (i = 0; i < outputCount; i++) {
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
(i == *(pMaxClass + 4))) {
continue;
}
if (pfProb[i] > *(pfMaxProb + j)) {
*(pfMaxProb + j) = pfProb[i];
*(pMaxClass + j) = i;
}
}
}
return 1;
}
static void dump_tensor_attr(rknn_tensor_attr* attr)
{
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
static std::vector<std::string> split(const std::string& str, const std::string& pattern)
{
std::vector<std::string> res;
if (str == "")
return res;
std::string strs = str + pattern;
size_t pos = strs.find(pattern);
while (pos != strs.npos) {
std::string temp = strs.substr(0, pos);
res.push_back(temp);
strs = strs.substr(pos + 1, strs.size());
pos = strs.find(pattern);
}
return res;
}
/*-------------------------------------------
Main Functions
-------------------------------------------*/
int main(int argc, char* argv[])
{
char* model_path = argv[1];
char* input_paths = argv[2];
std::vector<std::string> input_paths_split = split(input_paths, "#");
rknn_context ctx = 0;
// Load RKNN Model
int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
if (ret < 0) {
printf("rknn_init fail! ret=%d\n", ret);
return -1;
}
// Get sdk and driver version
rknn_sdk_version sdk_ver;
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
// Get Model Input Output Info
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
printf("input tensors:\n");
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
for (uint32_t i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
// query info
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
if (ret < 0) {
printf("rknn_init error! ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&input_attrs[i]);
}
printf("output tensors:\n");
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
for (uint32_t i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
// query info
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&output_attrs[i]);
}
// Get custom string
rknn_custom_string custom_string;
ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("custom string: %s\n", custom_string.string);
unsigned char* input_data[io_num.n_input];
int input_type[io_num.n_input];
int input_layout[io_num.n_input];
int input_size[io_num.n_input];
for (int i = 0; i < io_num.n_input; i++) {
input_data[i] = NULL;
input_type[i] = RKNN_TENSOR_UINT8;
input_layout[i] = RKNN_TENSOR_NHWC;
input_size[i] = input_attrs[i].n_elems * sizeof(uint8_t);
}
// Load input
if (io_num.n_input != input_paths_split.size()) {
return -1;
}
for (int i = 0; i < io_num.n_input; i++) {
input_data[i] = new unsigned char[input_attrs[i].size];
printf("%s\n", input_paths_split[i].c_str());
FILE* fp = fopen(input_paths_split[i].c_str(), "rb");
if (fp == NULL) {
perror("open failed!");
return -1;
}
fread(input_data[i], input_attrs[i].size, 1, fp);
fclose(fp);
if (!input_data[i]) {
return -1;
}
}
rknn_input inputs[io_num.n_input];
memset(inputs, 0, io_num.n_input * sizeof(rknn_input));
for (int i = 0; i < io_num.n_input; i++) {
inputs[i].index = i;
inputs[i].pass_through = 0;
inputs[i].type = (rknn_tensor_type)input_type[i];
inputs[i].fmt = (rknn_tensor_format)input_layout[i];
inputs[i].buf = input_data[i];
inputs[i].size = input_size[i];
}
// Set input
ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
if (ret < 0) {
printf("rknn_input_set fail! ret=%d\n", ret);
return -1;
}
ret = rknn_run(ctx, NULL);
if (ret < 0) {
printf("rknn_run fail! ret=%d\n", ret);
return -1;
}
// Get output
rknn_output outputs[io_num.n_output];
memset(outputs, 0, io_num.n_output * sizeof(rknn_output));
for (uint32_t i = 0; i < io_num.n_output; ++i) {
outputs[i].want_float = 1;
outputs[i].index = i;
outputs[i].is_prealloc = 0;
}
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
if (ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
return ret;
}
// Get top 5
uint32_t topNum = 5;
for (uint32_t i = 0; i < io_num.n_output; i++) {
uint32_t MaxClass[topNum];
float fMaxProb[topNum];
float* buffer = (float*)outputs[i].buf;
uint32_t sz = outputs[i].size / sizeof(float);
int top_count = sz > topNum ? topNum : sz;
rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
printf("---- Top%d ----\n", top_count);
for (int j = 0; j < top_count; j++) {
printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
}
}
// release outputs
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
// destroy
rknn_destroy(ctx);
for (int i = 0; i < io_num.n_input; i++) {
free(input_data[i]);
}
return 0;
}
|