File size: 10,953 Bytes
477da44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*-------------------------------------------
                Includes
-------------------------------------------*/
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#define _BASETSD_H

#include "RgaUtils.h"

#include "postprocess.h"

#include "rknn_api.h"
#include "preprocess.h"

#define PERF_WITH_POST 1
/*-------------------------------------------
                  Functions
-------------------------------------------*/

static void dump_tensor_attr(rknn_tensor_attr *attr)
{
  std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]);
  for (int i = 1; i < attr->n_dims; ++i)
  {
    shape_str += ", " + std::to_string(attr->dims[i]);
  }

  printf("  index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, w_stride = %d, size_with_stride=%d, fmt=%s, "
         "type=%s, qnt_type=%s, "
         "zp=%d, scale=%f\n",
         attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems, attr->size, attr->w_stride,
         attr->size_with_stride, get_format_string(attr->fmt), get_type_string(attr->type),
         get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}

double __get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); }

static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz)
{
  unsigned char *data;
  int ret;

  data = NULL;

  if (NULL == fp)
  {
    return NULL;
  }

  ret = fseek(fp, ofst, SEEK_SET);
  if (ret != 0)
  {
    printf("blob seek failure.\n");
    return NULL;
  }

  data = (unsigned char *)malloc(sz);
  if (data == NULL)
  {
    printf("buffer malloc failure.\n");
    return NULL;
  }
  ret = fread(data, 1, sz, fp);
  return data;
}

static unsigned char *load_model(const char *filename, int *model_size)
{
  FILE *fp;
  unsigned char *data;

  fp = fopen(filename, "rb");
  if (NULL == fp)
  {
    printf("Open file %s failed.\n", filename);
    return NULL;
  }

  fseek(fp, 0, SEEK_END);
  int size = ftell(fp);

  data = load_data(fp, 0, size);

  fclose(fp);

  *model_size = size;
  return data;
}

static int saveFloat(const char *file_name, float *output, int element_size)
{
  FILE *fp;
  fp = fopen(file_name, "w");
  for (int i = 0; i < element_size; i++)
  {
    fprintf(fp, "%.6f\n", output[i]);
  }
  fclose(fp);
  return 0;
}

/*-------------------------------------------
                  Main Functions
-------------------------------------------*/
int main(int argc, char **argv)
{
  if (argc < 3)
  {
    printf("Usage: %s <rknn model> <input_image_path> <resize/letterbox> <output_image_path>\n", argv[0]);
    return -1;
  }
  int ret;
  rknn_context ctx;
  size_t actual_size = 0;
  int img_width = 0;
  int img_height = 0;
  int img_channel = 0;
  const float nms_threshold = NMS_THRESH;      // 默认的NMS阈值
  const float box_conf_threshold = BOX_THRESH; // 默认的置信度阈值
  struct timeval start_time, stop_time;
  char *model_name = (char *)argv[1];
  char *input_path = argv[2];
  std::string option = "letterbox";
  std::string out_path = "./out.jpg";
  if (argc >= 4)
  {
    option = argv[3];
  }
  if (argc >= 5)
  {
    out_path = argv[4];
  }

  // init rga context
  rga_buffer_t src;
  rga_buffer_t dst;
  memset(&src, 0, sizeof(src));
  memset(&dst, 0, sizeof(dst));

  printf("post process config: box_conf_threshold = %.2f, nms_threshold = %.2f\n", box_conf_threshold, nms_threshold);

  /* Create the neural network */
  printf("Loading mode...\n");
  int model_data_size = 0;
  unsigned char *model_data = load_model(model_name, &model_data_size);
  ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
  if (ret < 0)
  {
    printf("rknn_init error ret=%d\n", ret);
    return -1;
  }

  rknn_sdk_version version;
  ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version));
  if (ret < 0)
  {
    printf("rknn_init error ret=%d\n", ret);
    return -1;
  }
  printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version);

  rknn_input_output_num io_num;
  ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
  if (ret < 0)
  {
    printf("rknn_init error ret=%d\n", ret);
    return -1;
  }
  printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);

  rknn_tensor_attr input_attrs[io_num.n_input];
  memset(input_attrs, 0, sizeof(input_attrs));
  for (int i = 0; i < io_num.n_input; i++)
  {
    input_attrs[i].index = i;
    ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
    if (ret < 0)
    {
      printf("rknn_init error ret=%d\n", ret);
      return -1;
    }
    dump_tensor_attr(&(input_attrs[i]));
  }

  rknn_tensor_attr output_attrs[io_num.n_output];
  memset(output_attrs, 0, sizeof(output_attrs));
  for (int i = 0; i < io_num.n_output; i++)
  {
    output_attrs[i].index = i;
    ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
    dump_tensor_attr(&(output_attrs[i]));
  }

  int channel = 3;
  int width = 0;
  int height = 0;
  if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
  {
    printf("model is NCHW input fmt\n");
    channel = input_attrs[0].dims[1];
    height = input_attrs[0].dims[2];
    width = input_attrs[0].dims[3];
  }
  else
  {
    printf("model is NHWC input fmt\n");
    height = input_attrs[0].dims[1];
    width = input_attrs[0].dims[2];
    channel = input_attrs[0].dims[3];
  }

  printf("model input height=%d, width=%d, channel=%d\n", height, width, channel);

  rknn_input inputs[1];
  memset(inputs, 0, sizeof(inputs));
  inputs[0].index = 0;
  inputs[0].type = RKNN_TENSOR_UINT8;
  inputs[0].size = width * height * channel;
  inputs[0].fmt = RKNN_TENSOR_NHWC;
  inputs[0].pass_through = 0;

  // 读取图片
  printf("Read %s ...\n", input_path);
  cv::Mat orig_img = cv::imread(input_path, 1);
  if (!orig_img.data)
  {
    printf("cv::imread %s fail!\n", input_path);
    return -1;
  }
  cv::Mat img;
  cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);
  img_width = img.cols;
  img_height = img.rows;
  printf("img width = %d, img height = %d\n", img_width, img_height);

  // 指定目标大小和预处理方式,默认使用LetterBox的预处理
  BOX_RECT pads;
  memset(&pads, 0, sizeof(BOX_RECT));
  cv::Size target_size(width, height);
  cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3);
  // 计算缩放比例
  float scale_w = (float)target_size.width / img.cols;
  float scale_h = (float)target_size.height / img.rows;

  if (img_width != width || img_height != height)
  {
    // 直接缩放采用RGA加速
    if (option == "resize")
    {
      printf("resize image by rga\n");
      ret = resize_rga(src, dst, img, resized_img, target_size);
      if (ret != 0)
      {
        fprintf(stderr, "resize with rga error\n");
        return -1;
      }
      // 保存预处理图片
      cv::imwrite("resize_input.jpg", resized_img);
    }
    else if (option == "letterbox")
    {
      printf("resize image with letterbox\n");
      float min_scale = std::min(scale_w, scale_h);
      scale_w = min_scale;
      scale_h = min_scale;
      letterbox(img, resized_img, pads, min_scale, target_size);
      // 保存预处理图片
      cv::imwrite("letterbox_input.jpg", resized_img);
    }
    else
    {
      fprintf(stderr, "Invalid resize option. Use 'resize' or 'letterbox'.\n");
      return -1;
    }
    inputs[0].buf = resized_img.data;
  }
  else
  {
    inputs[0].buf = img.data;
  }

  gettimeofday(&start_time, NULL);
  rknn_inputs_set(ctx, io_num.n_input, inputs);

  rknn_output outputs[io_num.n_output];
  memset(outputs, 0, sizeof(outputs));
  for (int i = 0; i < io_num.n_output; i++)
  {
    outputs[i].index = i;
    outputs[i].want_float = 0;
  }

  // 执行推理
  ret = rknn_run(ctx, NULL);
  ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
  gettimeofday(&stop_time, NULL);
  printf("once run use %f ms\n", (__get_us(stop_time) - __get_us(start_time)) / 1000);

  // 后处理
  detect_result_group_t detect_result_group;
  std::vector<float> out_scales;
  std::vector<int32_t> out_zps;
  for (int i = 0; i < io_num.n_output; ++i)
  {
    out_scales.push_back(output_attrs[i].scale);
    out_zps.push_back(output_attrs[i].zp);
  }
  post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
               box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group);

  // 画框和概率
  char text[256];
  for (int i = 0; i < detect_result_group.count; i++)
  {
    detect_result_t *det_result = &(detect_result_group.results[i]);
    sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
    printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top,
           det_result->box.right, det_result->box.bottom, det_result->prop);
    int x1 = det_result->box.left;
    int y1 = det_result->box.top;
    int x2 = det_result->box.right;
    int y2 = det_result->box.bottom;
    rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(256, 0, 0, 256), 3);
    putText(orig_img, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255));
  }

  printf("save detect result to %s\n", out_path.c_str());
  imwrite(out_path, orig_img);
  ret = rknn_outputs_release(ctx, io_num.n_output, outputs);

  // 耗时统计
  int test_count = 10;
  gettimeofday(&start_time, NULL);
  for (int i = 0; i < test_count; ++i)
  {
    rknn_inputs_set(ctx, io_num.n_input, inputs);
    ret = rknn_run(ctx, NULL);
    ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
#if PERF_WITH_POST
    post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
                 box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
#endif
    ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
  }
  gettimeofday(&stop_time, NULL);
  printf("loop count = %d , average run  %f ms\n", test_count,
         (__get_us(stop_time) - __get_us(start_time)) / 1000.0 / test_count);

  deinitPostProcess();

  // release
  ret = rknn_destroy(ctx);

  if (model_data)
  {
    free(model_data);
  }

  return 0;
}