import torch | |
import torchvision.models as models | |
from autosparsity.sparsity import sparsity_model | |
if __name__ == "__main__": | |
model = models.resnet50(pretrained=True).cuda() | |
optimizer = None | |
mode = 0 | |
sparsity_model(model, optimizer, mode) | |
model.eval() | |
x = torch.randn((1,3,224,224)).cuda() | |
torch.onnx.export( | |
model, x, 'resnet50.onnx', input_names=['inputs'], output_names=['outputs'] | |
) |