|
import numpy as np |
|
import cv2 |
|
from rknn.api import RKNN |
|
|
|
|
|
ONNX_MODEL = 'resnet50.onnx' |
|
RKNN_MODEL = 'resnet50.rknn' |
|
|
|
def show_outputs(outputs): |
|
output = outputs[0][0] |
|
index = sorted(range(len(output)), key=lambda k : output[k], reverse=True) |
|
fp = open('./labels.txt', 'r') |
|
labels = fp.readlines() |
|
top5_str = 'resnet50_sparse_infer\n-----TOP 5-----\n' |
|
for i in range(5): |
|
value = output[index[i]] |
|
if value > 0: |
|
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1]) |
|
else: |
|
topi = '[ -1]: 0.0\n' |
|
top5_str += topi |
|
print(top5_str.strip()) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
rknn = RKNN(verbose=True) |
|
|
|
|
|
print('--> Config model') |
|
rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 57.12, 57.375], target_platform='rk3576', sparse_infer=True) |
|
print('done') |
|
|
|
|
|
print('--> Loading model') |
|
ret = rknn.load_onnx(model=ONNX_MODEL) |
|
if ret != 0: |
|
print('Load model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Building model') |
|
ret = rknn.build(do_quantization=True, dataset='./datasets.txt') |
|
if ret != 0: |
|
print('Build model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Export rknn model') |
|
ret = rknn.export_rknn(RKNN_MODEL) |
|
if ret != 0: |
|
print('Export rknn model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
img = cv2.imread('./dog_224x224.jpg') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = np.expand_dims(img, 0) |
|
|
|
|
|
print('--> Init runtime environment') |
|
ret = rknn.init_runtime(target='rk3576') |
|
if ret != 0: |
|
print('Init runtime environment failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Running model') |
|
outputs = rknn.inference(inputs=[img], data_format=['nhwc']) |
|
x = outputs[0] |
|
output = np.exp(x)/np.sum(np.exp(x)) |
|
outputs = [output] |
|
show_outputs(outputs) |
|
print('done') |
|
|
|
rknn.release() |
|
|