csukuangfj
first commit
477da44
import cv2
import numpy as np
import platform
from synset_label import labels
from rknnlite.api import RKNNLite
# decice tree for RK356x/RK3576/RK3588
DEVICE_COMPATIBLE_NODE = '/proc/device-tree/compatible'
def get_host():
# get platform and device type
system = platform.system()
machine = platform.machine()
os_machine = system + '-' + machine
if os_machine == 'Linux-aarch64':
try:
with open(DEVICE_COMPATIBLE_NODE) as f:
device_compatible_str = f.read()
if 'rk3588' in device_compatible_str:
host = 'RK3588'
elif 'rk3562' in device_compatible_str:
host = 'RK3562'
elif 'rk3576' in device_compatible_str:
host = 'RK3576'
else:
host = 'RK3566_RK3568'
except IOError:
print('Read device node {} failed.'.format(DEVICE_COMPATIBLE_NODE))
exit(-1)
else:
host = os_machine
return host
INPUT_SIZE = 224
RK3566_RK3568_RKNN_MODEL = 'mobilenet_v2_for_rk3566_rk3568.rknn'
RK3588_RKNN_MODEL = 'mobilenet_v2_for_rk3588.rknn'
RK3562_RKNN_MODEL = 'mobilenet_v2_for_rk3562.rknn'
RK3576_RKNN_MODEL = 'mobilenet_v2_for_rk3576.rknn'
def show_top5(result):
output = result[0].reshape(-1)
# Get the indices of the top 5 largest values
output_sorted_indices = np.argsort(output)[::-1][:5]
top5_str = '-----TOP 5-----\n'
for i, index in enumerate(output_sorted_indices):
value = output[index]
if value > 0:
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(
index, value, labels[index])
else:
topi = '-1: 0.0\n'
top5_str += topi
print(top5_str)
if __name__ == '__main__':
# Get device information
host_name = get_host()
if host_name == 'RK3566_RK3568':
rknn_model = RK3566_RK3568_RKNN_MODEL
elif host_name == 'RK3562':
rknn_model = RK3562_RKNN_MODEL
elif host_name == 'RK3576':
rknn_model = RK3576_RKNN_MODEL
elif host_name == 'RK3588':
rknn_model = RK3588_RKNN_MODEL
else:
print("This demo cannot run on the current platform: {}".format(host_name))
exit(-1)
dynamic_input = [
[[1, 3, 192, 192]],
[[1, 3, 256, 256]],
[[1, 3, 160, 160]],
[[1, 3, 224, 224]]
]
rknn_lite = RKNNLite()
# Load RKNN model
print('--> Load RKNN model')
ret = rknn_lite.load_rknn(rknn_model)
if ret != 0:
print('Load RKNN model failed')
exit(ret)
print('done')
img = cv2.imread('./dog_224x224.jpg')
# Init runtime environment
print('--> Init runtime environment')
# Run on RK356x / RK3576 / RK3588 with Debian OS, do not need specify target.
if host_name in ['RK3576', 'RK3588']:
# For RK3576 / RK3588, specify which NPU core the model runs on through the core_mask parameter.
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0)
else:
ret = rknn_lite.init_runtime()
if ret != 0:
print('Init runtime environment failed')
exit(ret)
print('done')
# Inference
print('--> Running model')
print('model: mobilenet_v2\n')
print('input shape: 1,3,224,224')
real_img = cv2.resize(img, (224, 224))
real_img = np.expand_dims(real_img, 0)
real_img = np.transpose(real_img, (0, 3, 1, 2))
outputs = rknn_lite.inference(inputs=[real_img], data_format=['nchw'])
# Show the classification results
show_top5(outputs)
print('input shape: 1,3,160,160')
real_img = cv2.resize(img, (160, 160))
real_img = np.expand_dims(real_img, 0)
real_img = np.transpose(real_img, (0, 3, 1, 2))
outputs = rknn_lite.inference(inputs=[real_img], data_format=['nchw'])
# Show the classification results
show_top5(outputs)
print('input shape: 1,3,256,256')
real_img = cv2.resize(img, (256, 256))
real_img = np.expand_dims(real_img, 0)
real_img = np.transpose(real_img, (0, 3, 1, 2))
outputs = rknn_lite.inference(inputs=[real_img], data_format=['nchw'])
# Show the classification results
show_top5(outputs)
print('done')
rknn_lite.release()