csukuangfj
first commit
477da44
import numpy as np
import cv2
from rknn.api import RKNN
def show_outputs(outputs):
np.save('./functions_model_pruning_0.npy', outputs[0])
output = outputs[0].reshape(-1)
print(output.shape)
index = sorted(range(len(output)), key=lambda k : output[k], reverse=True)
fp = open('./labels.txt', 'r')
labels = fp.readlines()
top5_str = 'mobilenet\n-----TOP 5-----\n'
for i in range(5):
value = output[index[i]]
if value > 0:
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1])
else:
topi = '[ -1]: 0.0\n'
top5_str += topi
print(top5_str.strip())
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566', model_pruning=True)
print('done')
# Load model (from https://github.com/shicai/MobileNet-Caffe)
print('--> Loading model')
ret = rknn.load_caffe(model='./mobilenet_deploy.prototxt',
blobs='./mobilenet.caffemodel')
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Tips
print('')
print('======================================== Tips =================================================================')
print('When verbose = True, the following similar prompts will appear during the build process, indicating that ')
print('model pruning has been effective for this model:')
print('')
print(' I model_pruning ...')
print(' I model_pruning results:')
print(' I Weight: -1.12145 MB (-6.9%)')
print(' I GFLOPs: -0.15563 (-13.4%)')
print(' I model_pruning done.')
print('')
print('The meaning of this prompts is that 6.9% of the weight was removed, and approximately 13.4% of computility were saved.')
print('Please note that not all models can be pruned, only models with sparse weights can be pruned.')
print('===============================================================================================================')
print('')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('./mobilenet.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread('./dog_224x224.jpg')
img = np.expand_dims(img, 0)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img], data_format=['nhwc'])
show_outputs(outputs)
print('done')
rknn.release()