csukuangfj
first commit
477da44
import numpy as np
import cv2
from rknn.api import RKNN
def show_outputs(outputs):
output_ = outputs[0].reshape((-1, 1000))
fp = open('./labels.txt', 'r')
labels = fp.readlines()
for batch, output in enumerate(output_):
index = sorted(range(len(output)), key=lambda k : output[k], reverse=True)
top5_str = '----- Batch {}: TOP 5 -----\n'.format(batch)
for i in range(5):
value = output[index[i]]
if value > 0:
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1])
else:
topi = '[ -1]: 0.0\n'
top5_str += topi
print(top5_str.strip())
def show_perfs(perfs):
perfs = 'perfs: {}\n'.format(outputs)
print(perfs)
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566')
print('done')
# Load model (from https://github.com/shicai/MobileNet-Caffe)
print('--> Loading model')
ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt',
blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel')
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt', rknn_batch_size=4)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('./mobilenet_v2.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Set inputs
img_0 = cv2.imread('./dog_224x224.jpg')
img_0 = np.expand_dims(img_0, 0)
img_1 = cv2.imread('./goldfish_224x224.jpg')
img_1 = np.expand_dims(img_1, 0)
img_2 = cv2.imread('./space_shuttle_224.jpg')
img_2 = np.expand_dims(img_2, 0)
img = np.concatenate((img_0, img_1, img_2, img_0), axis=0) # the inputs data need to be merged together using np.concatenate.
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img], data_format=['nhwc'])
np.save('./functions_multi_batch_0.npy', outputs[0])
show_outputs(outputs)
print('done')
rknn.release()