|
import numpy as np |
|
import cv2 |
|
from rknn.api import RKNN |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
rknn = RKNN(verbose=True) |
|
|
|
|
|
print('--> Config model') |
|
rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]], |
|
std_values=[[128, 128, 128], [1, 1, 1], [1, 1, 1], [128]], |
|
target_platform='rk3566') |
|
print('done') |
|
|
|
|
|
print('--> Loading model') |
|
ret = rknn.load_tensorflow(tf_pb='./conv_128.pb', |
|
inputs=['input1', 'input2', 'input3', 'input4'], |
|
outputs=['output'], |
|
input_size_list=[[1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 1]]) |
|
if ret != 0: |
|
print('Load model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Building model') |
|
ret = rknn.build(do_quantization=True, dataset='./dataset.txt') |
|
if ret != 0: |
|
print('Build model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Export rknn model') |
|
ret = rknn.export_rknn('./conv_128.rknn') |
|
if ret != 0: |
|
print('Export rknn model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Init runtime environment') |
|
ret = rknn.init_runtime() |
|
if ret != 0: |
|
print('Init runtime environment failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
img = cv2.imread('./dog_128x128.jpg') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = np.expand_dims(img, 0) |
|
|
|
img_gray = cv2.imread('./dog_128x128_gray.png', cv2.IMREAD_GRAYSCALE) |
|
img_gray = np.expand_dims(img_gray, -1) |
|
|
|
input2 = np.load('input2.npy').astype('float32') |
|
|
|
input3 = np.load('input3.npy').astype('float32') |
|
|
|
|
|
print('--> Running model') |
|
outputs = rknn.inference(inputs=[img, input2, input3, img_gray], data_format=['nhwc', 'nchw', 'nchw', 'nhwc']) |
|
np.save('./functions_multi_input_0.npy', outputs[0]) |
|
print('done') |
|
outputs[0] = outputs[0].reshape((1, -1)) |
|
print('inference result: ', outputs) |
|
|
|
rknn.release() |
|
|