|
import numpy as np |
|
import cv2 |
|
from rknn.api import RKNN |
|
import os |
|
|
|
|
|
def export_pytorch_model(): |
|
import torch |
|
import torchvision.models as models |
|
net = models.quantization.resnet18(pretrained=True, quantize=True) |
|
net.eval() |
|
trace_model = torch.jit.trace(net, torch.Tensor(1, 3, 224, 224)) |
|
trace_model.save('./resnet18_i8.pt') |
|
|
|
def show_outputs(output): |
|
index = sorted(range(len(output)), key=lambda k : output[k], reverse=True) |
|
fp = open('./labels.txt', 'r') |
|
labels = fp.readlines() |
|
top5_str = 'resnet18\n-----TOP 5-----\n' |
|
for i in range(5): |
|
value = output[index[i]] |
|
if value > 0: |
|
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1]) |
|
else: |
|
topi = '[ -1]: 0.0\n' |
|
top5_str += topi |
|
print(top5_str.strip()) |
|
|
|
|
|
def show_perfs(perfs): |
|
perfs = 'perfs: {}\n'.format(perfs) |
|
print(perfs) |
|
|
|
|
|
def softmax(x): |
|
return np.exp(x)/sum(np.exp(x)) |
|
|
|
def torch_version(): |
|
import torch |
|
torch_ver = torch.__version__.split('.') |
|
torch_ver[2] = torch_ver[2].split('+')[0] |
|
return [int(v) for v in torch_ver] |
|
|
|
if __name__ == '__main__': |
|
|
|
if torch_version() < [1, 9, 0]: |
|
import torch |
|
print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n" |
|
"Please update the torch version to '1.9.0' or higher!".format(torch.__version__)) |
|
exit(0) |
|
|
|
model = './resnet18_i8.pt' |
|
if not os.path.exists(model): |
|
export_pytorch_model() |
|
|
|
input_size_list = [[1, 3, 224, 224]] |
|
|
|
|
|
rknn = RKNN(verbose=True) |
|
|
|
|
|
print('--> Config model') |
|
rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395], target_platform='rk3566') |
|
print('done') |
|
|
|
|
|
print('--> Loading model') |
|
ret = rknn.load_pytorch(model=model, input_size_list=input_size_list) |
|
if ret != 0: |
|
print('Load model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Building model') |
|
ret = rknn.build(do_quantization=False) |
|
if ret != 0: |
|
print('Build model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Export rknn model') |
|
ret = rknn.export_rknn('./resnet_18.rknn') |
|
if ret != 0: |
|
print('Export rknn model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
img = cv2.imread('./space_shuttle_224.jpg') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = np.expand_dims(img, 0) |
|
|
|
|
|
print('--> Init runtime environment') |
|
ret = rknn.init_runtime() |
|
if ret != 0: |
|
print('Init runtime environment failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Running model') |
|
outputs = rknn.inference(inputs=[img], data_format=['nhwc']) |
|
np.save('./pytorch_resnet18_qat_0.npy', outputs[0]) |
|
show_outputs(softmax(np.array(outputs[0][0]))) |
|
print('done') |
|
|
|
rknn.release() |
|
|