csukuangfj
first commit
477da44
import numpy as np
import re
import math
import random
import cv2
from rknn.api import RKNN
INPUT_SIZE = 300
NUM_RESULTS = 1917
NUM_CLASSES = 91
Y_SCALE = 10.0
X_SCALE = 10.0
H_SCALE = 5.0
W_SCALE = 5.0
CLASSES = ('__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',
'traffic light', 'fire hydrant', '???', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', '???', 'backpack', 'umbrella', '???', '???',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', '???', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', '???', 'dining table', '???', '???', 'toilet',
'???', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', '???', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
def expit(x):
return 1. / (1. + math.exp(-x))
def unexpit(y):
return -1.0 * math.log((1.0 / y) - 1.0)
def CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1):
w = max(0.0, min(xmax0, xmax1) - max(xmin0, xmin1))
h = max(0.0, min(ymax0, ymax1) - max(ymin0, ymin1))
i = w * h
u = (xmax0 - xmin0) * (ymax0 - ymin0) + (xmax1 - xmin1) * (ymax1 - ymin1) - i
if u <= 0.0:
return 0.0
return i / u
def load_box_priors():
box_priors_ = []
fp = open('./box_priors.txt', 'r')
ls = fp.readlines()
for s in ls:
aList = re.findall('([-+]?\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?', s)
for ss in aList:
aNum = float((ss[0]+ss[2]))
box_priors_.append(aNum)
fp.close()
box_priors = np.array(box_priors_)
box_priors = box_priors.reshape(4, NUM_RESULTS)
return box_priors
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[127.5, 127.5, 127.5], std_values=[127.5, 127.5, 127.5], target_platform='rk3566')
print('done')
# Load model (from https://github.com/fvmassoli/Deep-Learning-SSD-Object-Detection)
print('--> Loading model')
ret = rknn.load_tensorflow(tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',
inputs=['Preprocessor/sub'],
outputs=['concat', 'concat_1'],
input_size_list=[[1, INPUT_SIZE, INPUT_SIZE, 3]])
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build Model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('./ssd_mobilenet_v1_coco.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Set inputs
orig_img = cv2.imread('./road.bmp')
img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (INPUT_SIZE, INPUT_SIZE), interpolation=cv2.INTER_CUBIC)
img = np.expand_dims(img, 0)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img], data_format=['nhwc'])
print('done')
predictions = outputs[0].reshape((1, NUM_RESULTS, 4))
np.save('./tensorflow_ssd_mobilenet_v1_0.npy', outputs[0])
outputClasses = outputs[1].reshape((1, NUM_RESULTS, NUM_CLASSES))
np.save('./tensorflow_ssd_mobilenet_v1_1.npy', outputs[0])
candidateBox = np.zeros([2, NUM_RESULTS], dtype=int)
classScore = [-1000.0] * NUM_RESULTS
vaildCnt = 0
box_priors = load_box_priors()
# Post Process
# got valid candidate box
for i in range(0, NUM_RESULTS):
topClassScore = -1000
topClassScoreIndex = -1
# Skip the first catch-all class.
for j in range(1, NUM_CLASSES):
score = expit(outputClasses[0][i][j])
if score > topClassScore:
topClassScoreIndex = j
topClassScore = score
if topClassScore > 0.4:
candidateBox[0][vaildCnt] = i
candidateBox[1][vaildCnt] = topClassScoreIndex
classScore[vaildCnt] = topClassScore
vaildCnt += 1
# calc position
for i in range(0, vaildCnt):
if candidateBox[0][i] == -1:
continue
n = candidateBox[0][i]
ycenter = predictions[0][n][0] / Y_SCALE * box_priors[2][n] + box_priors[0][n]
xcenter = predictions[0][n][1] / X_SCALE * box_priors[3][n] + box_priors[1][n]
h = math.exp(predictions[0][n][2] / H_SCALE) * box_priors[2][n]
w = math.exp(predictions[0][n][3] / W_SCALE) * box_priors[3][n]
ymin = ycenter - h / 2.
xmin = xcenter - w / 2.
ymax = ycenter + h / 2.
xmax = xcenter + w / 2.
predictions[0][n][0] = ymin
predictions[0][n][1] = xmin
predictions[0][n][2] = ymax
predictions[0][n][3] = xmax
# NMS
for i in range(0, vaildCnt):
if candidateBox[0][i] == -1:
continue
n = candidateBox[0][i]
xmin0 = predictions[0][n][1]
ymin0 = predictions[0][n][0]
xmax0 = predictions[0][n][3]
ymax0 = predictions[0][n][2]
for j in range(i+1, vaildCnt):
m = candidateBox[0][j]
if m == -1:
continue
xmin1 = predictions[0][m][1]
ymin1 = predictions[0][m][0]
xmax1 = predictions[0][m][3]
ymax1 = predictions[0][m][2]
iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1)
if iou >= 0.45:
candidateBox[0][j] = -1
# Draw result
if vaildCnt != 0:
print("{:^12} {:^12} {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))
print('-' * 50)
for i in range(0, vaildCnt):
if candidateBox[0][i] == -1:
continue
n = candidateBox[0][i]
xmin = max(0.0, min(1.0, predictions[0][n][1])) * INPUT_SIZE
ymin = max(0.0, min(1.0, predictions[0][n][0])) * INPUT_SIZE
xmax = max(0.0, min(1.0, predictions[0][n][3])) * INPUT_SIZE
ymax = max(0.0, min(1.0, predictions[0][n][2])) * INPUT_SIZE
print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[candidateBox[1][i]], classScore[i],
int(xmin), int(ymin), int(xmax), int(ymax)))
cv2.rectangle(orig_img, (int(xmin), int(ymin)), (int(xmax), int(ymax)),
(random.random()*255, random.random()*255, random.random()*255), 3)
cv2.imwrite("result.jpg", orig_img)
print('Save results to result.jpg!')
rknn.release()