rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/3rdparty
/opencv
/opencv-linux-aarch64
/include
/opencv2
/calib3d
/calib3d_c.h
/*M/////////////////////////////////////////////////////////////////////////////////////// | |
// | |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
// | |
// By downloading, copying, installing or using the software you agree to this license. | |
// If you do not agree to this license, do not download, install, | |
// copy or use the software. | |
// | |
// | |
// License Agreement | |
// For Open Source Computer Vision Library | |
// | |
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | |
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. | |
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. | |
// Third party copyrights are property of their respective owners. | |
// | |
// Redistribution and use in source and binary forms, with or without modification, | |
// are permitted provided that the following conditions are met: | |
// | |
// * Redistribution's of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// | |
// * Redistribution's in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// | |
// * The name of the copyright holders may not be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// | |
// This software is provided by the copyright holders and contributors "as is" and | |
// any express or implied warranties, including, but not limited to, the implied | |
// warranties of merchantability and fitness for a particular purpose are disclaimed. | |
// In no event shall the Intel Corporation or contributors be liable for any direct, | |
// indirect, incidental, special, exemplary, or consequential damages | |
// (including, but not limited to, procurement of substitute goods or services; | |
// loss of use, data, or profits; or business interruption) however caused | |
// and on any theory of liability, whether in contract, strict liability, | |
// or tort (including negligence or otherwise) arising in any way out of | |
// the use of this software, even if advised of the possibility of such damage. | |
// | |
//M*/ | |
extern "C" { | |
/** @addtogroup calib3d_c | |
@{ | |
*/ | |
/****************************************************************************************\ | |
* Camera Calibration, Pose Estimation and Stereo * | |
\****************************************************************************************/ | |
typedef struct CvPOSITObject CvPOSITObject; | |
/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */ | |
CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count ); | |
/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of | |
an object given its model and projection in a weak-perspective case */ | |
CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points, | |
double focal_length, CvTermCriteria criteria, | |
float* rotation_matrix, float* translation_vector); | |
/* Releases CvPOSITObject structure */ | |
CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object ); | |
/* updates the number of RANSAC iterations */ | |
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob, | |
int model_points, int max_iters ); | |
CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ); | |
/* Calculates fundamental matrix given a set of corresponding points */ | |
enum | |
{ | |
CV_ITERATIVE = 0, | |
CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" | |
CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem" | |
CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP" | |
}; | |
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, | |
CvMat* fundamental_matrix, | |
int method CV_DEFAULT(CV_FM_RANSAC), | |
double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99), | |
CvMat* status CV_DEFAULT(NULL) ); | |
/* For each input point on one of images | |
computes parameters of the corresponding | |
epipolar line on the other image */ | |
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points, | |
int which_image, | |
const CvMat* fundamental_matrix, | |
CvMat* correspondent_lines ); | |
/* Triangulation functions */ | |
CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, | |
CvMat* projPoints1, CvMat* projPoints2, | |
CvMat* points4D); | |
CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2, | |
CvMat* new_points1, CvMat* new_points2); | |
/* Computes the optimal new camera matrix according to the free scaling parameter alpha: | |
alpha=0 - only valid pixels will be retained in the undistorted image | |
alpha=1 - all the source image pixels will be retained in the undistorted image | |
*/ | |
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix, | |
const CvMat* dist_coeffs, | |
CvSize image_size, double alpha, | |
CvMat* new_camera_matrix, | |
CvSize new_imag_size CV_DEFAULT(cvSize(0,0)), | |
CvRect* valid_pixel_ROI CV_DEFAULT(0), | |
int center_principal_point CV_DEFAULT(0)); | |
/* Converts rotation vector to rotation matrix or vice versa */ | |
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst, | |
CvMat* jacobian CV_DEFAULT(0) ); | |
/* Finds perspective transformation between the object plane and image (view) plane */ | |
CVAPI(int) cvFindHomography( const CvMat* src_points, | |
const CvMat* dst_points, | |
CvMat* homography, | |
int method CV_DEFAULT(0), | |
double ransacReprojThreshold CV_DEFAULT(3), | |
CvMat* mask CV_DEFAULT(0), | |
int maxIters CV_DEFAULT(2000), | |
double confidence CV_DEFAULT(0.995)); | |
/* Computes RQ decomposition for 3x3 matrices */ | |
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, | |
CvMat *matrixQx CV_DEFAULT(NULL), | |
CvMat *matrixQy CV_DEFAULT(NULL), | |
CvMat *matrixQz CV_DEFAULT(NULL), | |
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); | |
/* Computes projection matrix decomposition */ | |
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, | |
CvMat *rotMatr, CvMat *posVect, | |
CvMat *rotMatrX CV_DEFAULT(NULL), | |
CvMat *rotMatrY CV_DEFAULT(NULL), | |
CvMat *rotMatrZ CV_DEFAULT(NULL), | |
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); | |
/* Computes d(AB)/dA and d(AB)/dB */ | |
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ); | |
/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)), | |
t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */ | |
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, | |
const CvMat* _rvec2, const CvMat* _tvec2, | |
CvMat* _rvec3, CvMat* _tvec3, | |
CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0), | |
CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0), | |
CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0), | |
CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) ); | |
/* Projects object points to the view plane using | |
the specified extrinsic and intrinsic camera parameters */ | |
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector, | |
const CvMat* translation_vector, const CvMat* camera_matrix, | |
const CvMat* distortion_coeffs, CvMat* image_points, | |
CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL), | |
CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL), | |
CvMat* dpddist CV_DEFAULT(NULL), | |
double aspect_ratio CV_DEFAULT(0)); | |
/* Finds extrinsic camera parameters from | |
a few known corresponding point pairs and intrinsic parameters */ | |
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points, | |
const CvMat* image_points, | |
const CvMat* camera_matrix, | |
const CvMat* distortion_coeffs, | |
CvMat* rotation_vector, | |
CvMat* translation_vector, | |
int use_extrinsic_guess CV_DEFAULT(0) ); | |
/* Computes initial estimate of the intrinsic camera parameters | |
in case of planar calibration target (e.g. chessboard) */ | |
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points, | |
const CvMat* image_points, | |
const CvMat* npoints, CvSize image_size, | |
CvMat* camera_matrix, | |
double aspect_ratio CV_DEFAULT(1.) ); | |
// Performs a fast check if a chessboard is in the input image. This is a workaround to | |
// a problem of cvFindChessboardCorners being slow on images with no chessboard | |
// - src: input image | |
// - size: chessboard size | |
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, | |
// 0 if there is no chessboard, -1 in case of error | |
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size); | |
/* Detects corners on a chessboard calibration pattern */ | |
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size, | |
CvPoint2D32f* corners, | |
int* corner_count CV_DEFAULT(NULL), | |
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) ); | |
/* Draws individual chessboard corners or the whole chessboard detected */ | |
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size, | |
CvPoint2D32f* corners, | |
int count, int pattern_was_found ); | |
/* Finds intrinsic and extrinsic camera parameters | |
from a few views of known calibration pattern */ | |
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points, | |
const CvMat* image_points, | |
const CvMat* point_counts, | |
CvSize image_size, | |
CvMat* camera_matrix, | |
CvMat* distortion_coeffs, | |
CvMat* rotation_vectors CV_DEFAULT(NULL), | |
CvMat* translation_vectors CV_DEFAULT(NULL), | |
int flags CV_DEFAULT(0), | |
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( | |
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) ); | |
/* Computes various useful characteristics of the camera from the data computed by | |
cvCalibrateCamera2 */ | |
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix, | |
CvSize image_size, | |
double aperture_width CV_DEFAULT(0), | |
double aperture_height CV_DEFAULT(0), | |
double *fovx CV_DEFAULT(NULL), | |
double *fovy CV_DEFAULT(NULL), | |
double *focal_length CV_DEFAULT(NULL), | |
CvPoint2D64f *principal_point CV_DEFAULT(NULL), | |
double *pixel_aspect_ratio CV_DEFAULT(NULL)); | |
/* Computes the transformation from one camera coordinate system to another one | |
from a few correspondent views of the same calibration target. Optionally, calibrates | |
both cameras */ | |
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1, | |
const CvMat* image_points2, const CvMat* npoints, | |
CvMat* camera_matrix1, CvMat* dist_coeffs1, | |
CvMat* camera_matrix2, CvMat* dist_coeffs2, | |
CvSize image_size, CvMat* R, CvMat* T, | |
CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0), | |
int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC), | |
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( | |
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)) ); | |
/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both | |
views parallel (=> to make all the epipolar lines horizontal or vertical) */ | |
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2, | |
const CvMat* dist_coeffs1, const CvMat* dist_coeffs2, | |
CvSize image_size, const CvMat* R, const CvMat* T, | |
CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2, | |
CvMat* Q CV_DEFAULT(0), | |
int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY), | |
double alpha CV_DEFAULT(-1), | |
CvSize new_image_size CV_DEFAULT(cvSize(0,0)), | |
CvRect* valid_pix_ROI1 CV_DEFAULT(0), | |
CvRect* valid_pix_ROI2 CV_DEFAULT(0)); | |
/* Computes rectification transformations for uncalibrated pair of images using a set | |
of point correspondences */ | |
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2, | |
const CvMat* F, CvSize img_size, | |
CvMat* H1, CvMat* H2, | |
double threshold CV_DEFAULT(5)); | |
/* stereo correspondence parameters and functions */ | |
/* Block matching algorithm structure */ | |
typedef struct CvStereoBMState | |
{ | |
// pre-filtering (normalization of input images) | |
int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now | |
int preFilterSize; // averaging window size: ~5x5..21x21 | |
int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap] | |
// correspondence using Sum of Absolute Difference (SAD) | |
int SADWindowSize; // ~5x5..21x21 | |
int minDisparity; // minimum disparity (can be negative) | |
int numberOfDisparities; // maximum disparity - minimum disparity (> 0) | |
// post-filtering | |
int textureThreshold; // the disparity is only computed for pixels | |
// with textured enough neighborhood | |
int uniquenessRatio; // accept the computed disparity d* only if | |
// SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.) | |
// for any d != d*+/-1 within the search range. | |
int speckleWindowSize; // disparity variation window | |
int speckleRange; // acceptable range of variation in window | |
int trySmallerWindows; // if 1, the results may be more accurate, | |
// at the expense of slower processing | |
CvRect roi1, roi2; | |
int disp12MaxDiff; | |
// temporary buffers | |
CvMat* preFilteredImg0; | |
CvMat* preFilteredImg1; | |
CvMat* slidingSumBuf; | |
CvMat* cost; | |
CvMat* disp; | |
} CvStereoBMState; | |
CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC), | |
int numberOfDisparities CV_DEFAULT(0)); | |
CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state ); | |
CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right, | |
CvArr* disparity, CvStereoBMState* state ); | |
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, | |
int numberOfDisparities, int SADWindowSize ); | |
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, | |
int minDisparity, int numberOfDisparities, | |
int disp12MaxDiff CV_DEFAULT(1) ); | |
/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */ | |
CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage, | |
CvArr* _3dImage, const CvMat* Q, | |
int handleMissingValues CV_DEFAULT(0) ); | |
/** @} calib3d_c */ | |
} // extern "C" | |
////////////////////////////////////////////////////////////////////////////////////////// | |
class CV_EXPORTS CvLevMarq | |
{ | |
public: | |
CvLevMarq(); | |
CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria= | |
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), | |
bool completeSymmFlag=false ); | |
~CvLevMarq(); | |
void init( int nparams, int nerrs, CvTermCriteria criteria= | |
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), | |
bool completeSymmFlag=false ); | |
bool update( const CvMat*& param, CvMat*& J, CvMat*& err ); | |
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm ); | |
void clear(); | |
void step(); | |
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 }; | |
cv::Ptr<CvMat> mask; | |
cv::Ptr<CvMat> prevParam; | |
cv::Ptr<CvMat> param; | |
cv::Ptr<CvMat> J; | |
cv::Ptr<CvMat> err; | |
cv::Ptr<CvMat> JtJ; | |
cv::Ptr<CvMat> JtJN; | |
cv::Ptr<CvMat> JtErr; | |
cv::Ptr<CvMat> JtJV; | |
cv::Ptr<CvMat> JtJW; | |
double prevErrNorm, errNorm; | |
int lambdaLg10; | |
CvTermCriteria criteria; | |
int state; | |
int iters; | |
bool completeSymmFlag; | |
int solveMethod; | |
}; | |