rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/3rdparty
/opencv
/opencv-linux-aarch64
/include
/opencv2
/dnn
/dnn.hpp
/*M/////////////////////////////////////////////////////////////////////////////////////// | |
// | |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
// | |
// By downloading, copying, installing or using the software you agree to this license. | |
// If you do not agree to this license, do not download, install, | |
// copy or use the software. | |
// | |
// | |
// License Agreement | |
// For Open Source Computer Vision Library | |
// | |
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. | |
// Third party copyrights are property of their respective owners. | |
// | |
// Redistribution and use in source and binary forms, with or without modification, | |
// are permitted provided that the following conditions are met: | |
// | |
// * Redistribution's of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// | |
// * Redistribution's in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// | |
// * The name of the copyright holders may not be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// | |
// This software is provided by the copyright holders and contributors "as is" and | |
// any express or implied warranties, including, but not limited to, the implied | |
// warranties of merchantability and fitness for a particular purpose are disclaimed. | |
// In no event shall the Intel Corporation or contributors be liable for any direct, | |
// indirect, incidental, special, exemplary, or consequential damages | |
// (including, but not limited to, procurement of substitute goods or services; | |
// loss of use, data, or profits; or business interruption) however caused | |
// and on any theory of liability, whether in contract, strict liability, | |
// or tort (including negligence or otherwise) arising in any way out of | |
// the use of this software, even if advised of the possibility of such damage. | |
// | |
//M*/ | |
namespace cv { namespace dnn { namespace experimental_dnn_34_v11 { } using namespace experimental_dnn_34_v11; }} | |
namespace cv { | |
namespace dnn { | |
CV__DNN_EXPERIMENTAL_NS_BEGIN | |
//! @addtogroup dnn | |
//! @{ | |
typedef std::vector<int> MatShape; | |
/** | |
* @brief Enum of computation backends supported by layers. | |
* @see Net::setPreferableBackend | |
*/ | |
enum Backend | |
{ | |
//! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if | |
//! OpenCV is built with Intel's Inference Engine library or | |
//! DNN_BACKEND_OPENCV otherwise. | |
DNN_BACKEND_DEFAULT, | |
DNN_BACKEND_HALIDE, | |
DNN_BACKEND_INFERENCE_ENGINE, | |
DNN_BACKEND_OPENCV | |
}; | |
/** | |
* @brief Enum of target devices for computations. | |
* @see Net::setPreferableTarget | |
*/ | |
enum Target | |
{ | |
DNN_TARGET_CPU, | |
DNN_TARGET_OPENCL, | |
DNN_TARGET_OPENCL_FP16, | |
DNN_TARGET_MYRIAD, | |
//! FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. | |
DNN_TARGET_FPGA | |
}; | |
CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends(); | |
CV_EXPORTS std::vector<Target> getAvailableTargets(Backend be); | |
/** @brief This class provides all data needed to initialize layer. | |
* | |
* It includes dictionary with scalar params (which can be read by using Dict interface), | |
* blob params #blobs and optional meta information: #name and #type of layer instance. | |
*/ | |
class CV_EXPORTS LayerParams : public Dict | |
{ | |
public: | |
//TODO: Add ability to name blob params | |
std::vector<Mat> blobs; //!< List of learned parameters stored as blobs. | |
String name; //!< Name of the layer instance (optional, can be used internal purposes). | |
String type; //!< Type name which was used for creating layer by layer factory (optional). | |
}; | |
/** | |
* @brief Derivatives of this class encapsulates functions of certain backends. | |
*/ | |
class BackendNode | |
{ | |
public: | |
BackendNode(int backendId); | |
virtual ~BackendNode(); //!< Virtual destructor to make polymorphism. | |
int backendId; //!< Backend identifier. | |
}; | |
/** | |
* @brief Derivatives of this class wraps cv::Mat for different backends and targets. | |
*/ | |
class BackendWrapper | |
{ | |
public: | |
BackendWrapper(int backendId, int targetId); | |
/** | |
* @brief Wrap cv::Mat for specific backend and target. | |
* @param[in] targetId Target identifier. | |
* @param[in] m cv::Mat for wrapping. | |
* | |
* Make CPU->GPU data transfer if it's require for the target. | |
*/ | |
BackendWrapper(int targetId, const cv::Mat& m); | |
/** | |
* @brief Make wrapper for reused cv::Mat. | |
* @param[in] base Wrapper of cv::Mat that will be reused. | |
* @param[in] shape Specific shape. | |
* | |
* Initialize wrapper from another one. It'll wrap the same host CPU | |
* memory and mustn't allocate memory on device(i.e. GPU). It might | |
* has different shape. Use in case of CPU memory reusing for reuse | |
* associated memory on device too. | |
*/ | |
BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape); | |
virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism. | |
/** | |
* @brief Transfer data to CPU host memory. | |
*/ | |
virtual void copyToHost() = 0; | |
/** | |
* @brief Indicate that an actual data is on CPU. | |
*/ | |
virtual void setHostDirty() = 0; | |
int backendId; //!< Backend identifier. | |
int targetId; //!< Target identifier. | |
}; | |
class CV_EXPORTS ActivationLayer; | |
/** @brief This interface class allows to build new Layers - are building blocks of networks. | |
* | |
* Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. | |
* Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. | |
*/ | |
class CV_EXPORTS_W Layer : public Algorithm | |
{ | |
public: | |
//! List of learned parameters must be stored here to allow read them by using Net::getParam(). | |
CV_PROP_RW std::vector<Mat> blobs; | |
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs. | |
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead | |
* @param[in] input vector of already allocated input blobs | |
* @param[out] output vector of already allocated output blobs | |
* | |
* If this method is called after network has allocated all memory for input and output blobs | |
* and before inferencing. | |
*/ | |
CV_DEPRECATED_EXTERNAL | |
virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output); | |
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs. | |
* @param[in] inputs vector of already allocated input blobs | |
* @param[out] outputs vector of already allocated output blobs | |
* | |
* If this method is called after network has allocated all memory for input and output blobs | |
* and before inferencing. | |
*/ | |
CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs); | |
/** @brief Given the @p input blobs, computes the output @p blobs. | |
* @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead | |
* @param[in] input the input blobs. | |
* @param[out] output allocated output blobs, which will store results of the computation. | |
* @param[out] internals allocated internal blobs | |
*/ | |
CV_DEPRECATED_EXTERNAL | |
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals); | |
/** @brief Given the @p input blobs, computes the output @p blobs. | |
* @param[in] inputs the input blobs. | |
* @param[out] outputs allocated output blobs, which will store results of the computation. | |
* @param[out] internals allocated internal blobs | |
*/ | |
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); | |
/** @brief Given the @p input blobs, computes the output @p blobs. | |
* @param[in] inputs the input blobs. | |
* @param[out] outputs allocated output blobs, which will store results of the computation. | |
* @param[out] internals allocated internal blobs | |
*/ | |
void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); | |
/** @brief | |
* @overload | |
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead | |
*/ | |
CV_DEPRECATED_EXTERNAL | |
void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs); | |
/** @brief | |
* @overload | |
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead | |
*/ | |
CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs); | |
/** @brief Allocates layer and computes output. | |
* @deprecated This method will be removed in the future release. | |
*/ | |
CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs, | |
CV_IN_OUT std::vector<Mat> &internals); | |
/** @brief Returns index of input blob into the input array. | |
* @param inputName label of input blob | |
* | |
* Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. | |
* This method maps label of input blob to its index into input vector. | |
*/ | |
virtual int inputNameToIndex(String inputName); | |
/** @brief Returns index of output blob in output array. | |
* @see inputNameToIndex() | |
*/ | |
CV_WRAP virtual int outputNameToIndex(const String& outputName); | |
/** | |
* @brief Ask layer if it support specific backend for doing computations. | |
* @param[in] backendId computation backend identifier. | |
* @see Backend | |
*/ | |
virtual bool supportBackend(int backendId); | |
/** | |
* @brief Returns Halide backend node. | |
* @param[in] inputs Input Halide buffers. | |
* @see BackendNode, BackendWrapper | |
* | |
* Input buffers should be exactly the same that will be used in forward invocations. | |
* Despite we can use Halide::ImageParam based on input shape only, | |
* it helps prevent some memory management issues (if something wrong, | |
* Halide tests will be failed). | |
*/ | |
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs); | |
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs); | |
/** | |
* @brief Automatic Halide scheduling based on layer hyper-parameters. | |
* @param[in] node Backend node with Halide functions. | |
* @param[in] inputs Blobs that will be used in forward invocations. | |
* @param[in] outputs Blobs that will be used in forward invocations. | |
* @param[in] targetId Target identifier | |
* @see BackendNode, Target | |
* | |
* Layer don't use own Halide::Func members because we can have applied | |
* layers fusing. In this way the fused function should be scheduled. | |
*/ | |
virtual void applyHalideScheduler(Ptr<BackendNode>& node, | |
const std::vector<Mat*> &inputs, | |
const std::vector<Mat> &outputs, | |
int targetId) const; | |
/** | |
* @brief Implement layers fusing. | |
* @param[in] node Backend node of bottom layer. | |
* @see BackendNode | |
* | |
* Actual for graph-based backends. If layer attached successfully, | |
* returns non-empty cv::Ptr to node of the same backend. | |
* Fuse only over the last function. | |
*/ | |
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node); | |
/** | |
* @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. | |
* @param[in] layer The subsequent activation layer. | |
* | |
* Returns true if the activation layer has been attached successfully. | |
*/ | |
virtual bool setActivation(const Ptr<ActivationLayer>& layer); | |
/** | |
* @brief Try to fuse current layer with a next one | |
* @param[in] top Next layer to be fused. | |
* @returns True if fusion was performed. | |
*/ | |
virtual bool tryFuse(Ptr<Layer>& top); | |
/** | |
* @brief Returns parameters of layers with channel-wise multiplication and addition. | |
* @param[out] scale Channel-wise multipliers. Total number of values should | |
* be equal to number of channels. | |
* @param[out] shift Channel-wise offsets. Total number of values should | |
* be equal to number of channels. | |
* | |
* Some layers can fuse their transformations with further layers. | |
* In example, convolution + batch normalization. This way base layer | |
* use weights from layer after it. Fused layer is skipped. | |
* By default, @p scale and @p shift are empty that means layer has no | |
* element-wise multiplications or additions. | |
*/ | |
virtual void getScaleShift(Mat& scale, Mat& shift) const; | |
/** | |
* @brief "Deattaches" all the layers, attached to particular layer. | |
*/ | |
virtual void unsetAttached(); | |
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, | |
const int requiredOutputs, | |
std::vector<MatShape> &outputs, | |
std::vector<MatShape> &internals) const; | |
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, | |
const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;} | |
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. | |
CV_PROP String type; //!< Type name which was used for creating layer by layer factory. | |
CV_PROP int preferableTarget; //!< prefer target for layer forwarding | |
Layer(); | |
explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. | |
void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. | |
virtual ~Layer(); | |
}; | |
/** @brief This class allows to create and manipulate comprehensive artificial neural networks. | |
* | |
* Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, | |
* and edges specify relationships between layers inputs and outputs. | |
* | |
* Each network layer has unique integer id and unique string name inside its network. | |
* LayerId can store either layer name or layer id. | |
* | |
* This class supports reference counting of its instances, i. e. copies point to the same instance. | |
*/ | |
class CV_EXPORTS_W_SIMPLE Net | |
{ | |
public: | |
CV_WRAP Net(); //!< Default constructor. | |
CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. | |
/** @brief Create a network from Intel's Model Optimizer intermediate representation. | |
* @param[in] xml XML configuration file with network's topology. | |
* @param[in] bin Binary file with trained weights. | |
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine | |
* backend. | |
*/ | |
CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin); | |
/** Returns true if there are no layers in the network. */ | |
CV_WRAP bool empty() const; | |
/** @brief Adds new layer to the net. | |
* @param name unique name of the adding layer. | |
* @param type typename of the adding layer (type must be registered in LayerRegister). | |
* @param params parameters which will be used to initialize the creating layer. | |
* @returns unique identifier of created layer, or -1 if a failure will happen. | |
*/ | |
int addLayer(const String &name, const String &type, LayerParams ¶ms); | |
/** @brief Adds new layer and connects its first input to the first output of previously added layer. | |
* @see addLayer() | |
*/ | |
int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); | |
/** @brief Converts string name of the layer to the integer identifier. | |
* @returns id of the layer, or -1 if the layer wasn't found. | |
*/ | |
CV_WRAP int getLayerId(const String &layer); | |
CV_WRAP std::vector<String> getLayerNames() const; | |
/** @brief Container for strings and integers. */ | |
typedef DictValue LayerId; | |
/** @brief Returns pointer to layer with specified id or name which the network use. */ | |
CV_WRAP Ptr<Layer> getLayer(LayerId layerId); | |
/** @brief Returns pointers to input layers of specific layer. */ | |
std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP | |
/** @brief Connects output of the first layer to input of the second layer. | |
* @param outPin descriptor of the first layer output. | |
* @param inpPin descriptor of the second layer input. | |
* | |
* Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>: | |
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer. | |
* If this part is empty then the network input pseudo layer will be used; | |
* - the second optional part of the template <DFN>input_number</DFN> | |
* is either number of the layer input, either label one. | |
* If this part is omitted then the first layer input will be used. | |
* | |
* @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() | |
*/ | |
CV_WRAP void connect(String outPin, String inpPin); | |
/** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. | |
* @param outLayerId identifier of the first layer | |
* @param outNum number of the first layer output | |
* @param inpLayerId identifier of the second layer | |
* @param inpNum number of the second layer input | |
*/ | |
void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); | |
/** @brief Sets outputs names of the network input pseudo layer. | |
* | |
* Each net always has special own the network input pseudo layer with id=0. | |
* This layer stores the user blobs only and don't make any computations. | |
* In fact, this layer provides the only way to pass user data into the network. | |
* As any other layer, this layer can label its outputs and this function provides an easy way to do this. | |
*/ | |
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames); | |
/** @brief Runs forward pass to compute output of layer with name @p outputName. | |
* @param outputName name for layer which output is needed to get | |
* @return blob for first output of specified layer. | |
* @details By default runs forward pass for the whole network. | |
*/ | |
CV_WRAP Mat forward(const String& outputName = String()); | |
/** @brief Runs forward pass to compute output of layer with name @p outputName. | |
* @param outputBlobs contains all output blobs for specified layer. | |
* @param outputName name for layer which output is needed to get | |
* @details If @p outputName is empty, runs forward pass for the whole network. | |
*/ | |
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()); | |
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. | |
* @param outputBlobs contains blobs for first outputs of specified layers. | |
* @param outBlobNames names for layers which outputs are needed to get | |
*/ | |
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, | |
const std::vector<String>& outBlobNames); | |
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. | |
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. | |
* @param outBlobNames names for layers which outputs are needed to get | |
*/ | |
CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs, | |
const std::vector<String>& outBlobNames); | |
/** | |
* @brief Compile Halide layers. | |
* @param[in] scheduler Path to YAML file with scheduling directives. | |
* @see setPreferableBackend | |
* | |
* Schedule layers that support Halide backend. Then compile them for | |
* specific target. For layers that not represented in scheduling file | |
* or if no manual scheduling used at all, automatic scheduling will be applied. | |
*/ | |
CV_WRAP void setHalideScheduler(const String& scheduler); | |
/** | |
* @brief Ask network to use specific computation backend where it supported. | |
* @param[in] backendId backend identifier. | |
* @see Backend | |
* | |
* If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT | |
* means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV. | |
*/ | |
CV_WRAP void setPreferableBackend(int backendId); | |
/** | |
* @brief Ask network to make computations on specific target device. | |
* @param[in] targetId target identifier. | |
* @see Target | |
* | |
* List of supported combinations backend / target: | |
* | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | | |
* |------------------------|--------------------|------------------------------|--------------------| | |
* | DNN_TARGET_CPU | + | + | + | | |
* | DNN_TARGET_OPENCL | + | + | + | | |
* | DNN_TARGET_OPENCL_FP16 | + | + | | | |
* | DNN_TARGET_MYRIAD | | + | | | |
* | DNN_TARGET_FPGA | | + | | | |
*/ | |
CV_WRAP void setPreferableTarget(int targetId); | |
/** @brief Sets the new input value for the network | |
* @param blob A new blob. Should have CV_32F or CV_8U depth. | |
* @param name A name of input layer. | |
* @param scalefactor An optional normalization scale. | |
* @param mean An optional mean subtraction values. | |
* @see connect(String, String) to know format of the descriptor. | |
* | |
* If scale or mean values are specified, a final input blob is computed | |
* as: | |
* \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f] | |
*/ | |
CV_WRAP void setInput(InputArray blob, const String& name = "", | |
double scalefactor = 1.0, const Scalar& mean = Scalar()); | |
/** @brief Sets the new value for the learned param of the layer. | |
* @param layer name or id of the layer. | |
* @param numParam index of the layer parameter in the Layer::blobs array. | |
* @param blob the new value. | |
* @see Layer::blobs | |
* @note If shape of the new blob differs from the previous shape, | |
* then the following forward pass may fail. | |
*/ | |
CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob); | |
/** @brief Returns parameter blob of the layer. | |
* @param layer name or id of the layer. | |
* @param numParam index of the layer parameter in the Layer::blobs array. | |
* @see Layer::blobs | |
*/ | |
CV_WRAP Mat getParam(LayerId layer, int numParam = 0); | |
/** @brief Returns indexes of layers with unconnected outputs. | |
*/ | |
CV_WRAP std::vector<int> getUnconnectedOutLayers() const; | |
/** @brief Returns names of layers with unconnected outputs. | |
*/ | |
CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const; | |
/** @brief Returns input and output shapes for all layers in loaded model; | |
* preliminary inferencing isn't necessary. | |
* @param netInputShapes shapes for all input blobs in net input layer. | |
* @param layersIds output parameter for layer IDs. | |
* @param inLayersShapes output parameter for input layers shapes; | |
* order is the same as in layersIds | |
* @param outLayersShapes output parameter for output layers shapes; | |
* order is the same as in layersIds | |
*/ | |
CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes, | |
CV_OUT std::vector<int>& layersIds, | |
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, | |
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; | |
/** @overload */ | |
CV_WRAP void getLayersShapes(const MatShape& netInputShape, | |
CV_OUT std::vector<int>& layersIds, | |
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, | |
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; | |
/** @brief Returns input and output shapes for layer with specified | |
* id in loaded model; preliminary inferencing isn't necessary. | |
* @param netInputShape shape input blob in net input layer. | |
* @param layerId id for layer. | |
* @param inLayerShapes output parameter for input layers shapes; | |
* order is the same as in layersIds | |
* @param outLayerShapes output parameter for output layers shapes; | |
* order is the same as in layersIds | |
*/ | |
void getLayerShapes(const MatShape& netInputShape, | |
const int layerId, | |
CV_OUT std::vector<MatShape>& inLayerShapes, | |
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP | |
/** @overload */ | |
void getLayerShapes(const std::vector<MatShape>& netInputShapes, | |
const int layerId, | |
CV_OUT std::vector<MatShape>& inLayerShapes, | |
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP | |
/** @brief Computes FLOP for whole loaded model with specified input shapes. | |
* @param netInputShapes vector of shapes for all net inputs. | |
* @returns computed FLOP. | |
*/ | |
CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const; | |
/** @overload */ | |
CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const; | |
/** @overload */ | |
CV_WRAP int64 getFLOPS(const int layerId, | |
const std::vector<MatShape>& netInputShapes) const; | |
/** @overload */ | |
CV_WRAP int64 getFLOPS(const int layerId, | |
const MatShape& netInputShape) const; | |
/** @brief Returns list of types for layer used in model. | |
* @param layersTypes output parameter for returning types. | |
*/ | |
CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const; | |
/** @brief Returns count of layers of specified type. | |
* @param layerType type. | |
* @returns count of layers | |
*/ | |
CV_WRAP int getLayersCount(const String& layerType) const; | |
/** @brief Computes bytes number which are required to store | |
* all weights and intermediate blobs for model. | |
* @param netInputShapes vector of shapes for all net inputs. | |
* @param weights output parameter to store resulting bytes for weights. | |
* @param blobs output parameter to store resulting bytes for intermediate blobs. | |
*/ | |
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, | |
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP | |
/** @overload */ | |
CV_WRAP void getMemoryConsumption(const MatShape& netInputShape, | |
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; | |
/** @overload */ | |
CV_WRAP void getMemoryConsumption(const int layerId, | |
const std::vector<MatShape>& netInputShapes, | |
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; | |
/** @overload */ | |
CV_WRAP void getMemoryConsumption(const int layerId, | |
const MatShape& netInputShape, | |
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; | |
/** @brief Computes bytes number which are required to store | |
* all weights and intermediate blobs for each layer. | |
* @param netInputShapes vector of shapes for all net inputs. | |
* @param layerIds output vector to save layer IDs. | |
* @param weights output parameter to store resulting bytes for weights. | |
* @param blobs output parameter to store resulting bytes for intermediate blobs. | |
*/ | |
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, | |
CV_OUT std::vector<int>& layerIds, | |
CV_OUT std::vector<size_t>& weights, | |
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP | |
/** @overload */ | |
void getMemoryConsumption(const MatShape& netInputShape, | |
CV_OUT std::vector<int>& layerIds, | |
CV_OUT std::vector<size_t>& weights, | |
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP | |
/** @brief Enables or disables layer fusion in the network. | |
* @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. | |
*/ | |
CV_WRAP void enableFusion(bool fusion); | |
/** @brief Returns overall time for inference and timings (in ticks) for layers. | |
* Indexes in returned vector correspond to layers ids. Some layers can be fused with others, | |
* in this case zero ticks count will be return for that skipped layers. | |
* @param timings vector for tick timings for all layers. | |
* @return overall ticks for model inference. | |
*/ | |
CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings); | |
private: | |
struct Impl; | |
Ptr<Impl> impl; | |
}; | |
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. | |
* @param cfgFile path to the .cfg file with text description of the network architecture. | |
* @param darknetModel path to the .weights file with learned network. | |
* @returns Network object that ready to do forward, throw an exception in failure cases. | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String()); | |
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. | |
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. | |
* @param bufferModel A buffer contains a content of .weights file with learned network. | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, | |
const std::vector<uchar>& bufferModel = std::vector<uchar>()); | |
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. | |
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. | |
* @param lenCfg Number of bytes to read from bufferCfg | |
* @param bufferModel A buffer contains a content of .weights file with learned network. | |
* @param lenModel Number of bytes to read from bufferModel | |
* @returns Net object. | |
*/ | |
CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, | |
const char *bufferModel = NULL, size_t lenModel = 0); | |
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format. | |
* @param prototxt path to the .prototxt file with text description of the network architecture. | |
* @param caffeModel path to the .caffemodel file with learned network. | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); | |
/** @brief Reads a network model stored in Caffe model in memory. | |
* @param bufferProto buffer containing the content of the .prototxt file | |
* @param bufferModel buffer containing the content of the .caffemodel file | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto, | |
const std::vector<uchar>& bufferModel = std::vector<uchar>()); | |
/** @brief Reads a network model stored in Caffe model in memory. | |
* @details This is an overloaded member function, provided for convenience. | |
* It differs from the above function only in what argument(s) it accepts. | |
* @param bufferProto buffer containing the content of the .prototxt file | |
* @param lenProto length of bufferProto | |
* @param bufferModel buffer containing the content of the .caffemodel file | |
* @param lenModel length of bufferModel | |
* @returns Net object. | |
*/ | |
CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto, | |
const char *bufferModel = NULL, size_t lenModel = 0); | |
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. | |
* @param model path to the .pb file with binary protobuf description of the network architecture | |
* @param config path to the .pbtxt file that contains text graph definition in protobuf format. | |
* Resulting Net object is built by text graph using weights from a binary one that | |
* let us make it more flexible. | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String()); | |
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. | |
* @param bufferModel buffer containing the content of the pb file | |
* @param bufferConfig buffer containing the content of the pbtxt file | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel, | |
const std::vector<uchar>& bufferConfig = std::vector<uchar>()); | |
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. | |
* @details This is an overloaded member function, provided for convenience. | |
* It differs from the above function only in what argument(s) it accepts. | |
* @param bufferModel buffer containing the content of the pb file | |
* @param lenModel length of bufferModel | |
* @param bufferConfig buffer containing the content of the pbtxt file | |
* @param lenConfig length of bufferConfig | |
*/ | |
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel, | |
const char *bufferConfig = NULL, size_t lenConfig = 0); | |
/** | |
* @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format. | |
* @param model path to the file, dumped from Torch by using torch.save() function. | |
* @param isBinary specifies whether the network was serialized in ascii mode or binary. | |
* @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch. | |
* @returns Net object. | |
* | |
* @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, | |
* which has various bit-length on different systems. | |
* | |
* The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object | |
* with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. | |
* | |
* List of supported layers (i.e. object instances derived from Torch nn.Module class): | |
* - nn.Sequential | |
* - nn.Parallel | |
* - nn.Concat | |
* - nn.Linear | |
* - nn.SpatialConvolution | |
* - nn.SpatialMaxPooling, nn.SpatialAveragePooling | |
* - nn.ReLU, nn.TanH, nn.Sigmoid | |
* - nn.Reshape | |
* - nn.SoftMax, nn.LogSoftMax | |
* | |
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. | |
*/ | |
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true); | |
/** | |
* @brief Read deep learning network represented in one of the supported formats. | |
* @param[in] model Binary file contains trained weights. The following file | |
* extensions are expected for models from different frameworks: | |
* * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/) | |
* * `*.pb` (TensorFlow, https://www.tensorflow.org/) | |
* * `*.t7` | `*.net` (Torch, http://torch.ch/) | |
* * `*.weights` (Darknet, https://pjreddie.com/darknet/) | |
* * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit) | |
* @param[in] config Text file contains network configuration. It could be a | |
* file with the following extensions: | |
* * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/) | |
* * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/) | |
* * `*.cfg` (Darknet, https://pjreddie.com/darknet/) | |
* * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit) | |
* @param[in] framework Explicit framework name tag to determine a format. | |
* @returns Net object. | |
* | |
* This function automatically detects an origin framework of trained model | |
* and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow, | |
* @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config | |
* arguments does not matter. | |
*/ | |
CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = ""); | |
/** | |
* @brief Read deep learning network represented in one of the supported formats. | |
* @details This is an overloaded member function, provided for convenience. | |
* It differs from the above function only in what argument(s) it accepts. | |
* @param[in] framework Name of origin framework. | |
* @param[in] bufferModel A buffer with a content of binary file with weights | |
* @param[in] bufferConfig A buffer with a content of text file contains network configuration. | |
* @returns Net object. | |
*/ | |
CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel, | |
const std::vector<uchar>& bufferConfig = std::vector<uchar>()); | |
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. | |
* @warning This function has the same limitations as readNetFromTorch(). | |
*/ | |
CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true); | |
/** @brief Load a network from Intel's Model Optimizer intermediate representation. | |
* @param[in] xml XML configuration file with network's topology. | |
* @param[in] bin Binary file with trained weights. | |
* @returns Net object. | |
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine | |
* backend. | |
*/ | |
CV_EXPORTS_W Net readNetFromModelOptimizer(const String &xml, const String &bin); | |
/** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>. | |
* @param onnxFile path to the .onnx file with text description of the network architecture. | |
* @returns Network object that ready to do forward, throw an exception in failure cases. | |
*/ | |
CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile); | |
/** @brief Creates blob from .pb file. | |
* @param path to the .pb file with input tensor. | |
* @returns Mat. | |
*/ | |
CV_EXPORTS_W Mat readTensorFromONNX(const String& path); | |
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center, | |
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels. | |
* @param image input image (with 1-, 3- or 4-channels). | |
* @param size spatial size for output image | |
* @param mean scalar with mean values which are subtracted from channels. Values are intended | |
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. | |
* @param scalefactor multiplier for @p image values. | |
* @param swapRB flag which indicates that swap first and last channels | |
* in 3-channel image is necessary. | |
* @param crop flag which indicates whether image will be cropped after resize or not | |
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U. | |
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding | |
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed. | |
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. | |
* @returns 4-dimensional Mat with NCHW dimensions order. | |
*/ | |
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(), | |
const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, | |
int ddepth=CV_32F); | |
/** @brief Creates 4-dimensional blob from image. | |
* @details This is an overloaded member function, provided for convenience. | |
* It differs from the above function only in what argument(s) it accepts. | |
*/ | |
CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0, | |
const Size& size = Size(), const Scalar& mean = Scalar(), | |
bool swapRB=false, bool crop=false, int ddepth=CV_32F); | |
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and | |
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor, | |
* swap Blue and Red channels. | |
* @param images input images (all with 1-, 3- or 4-channels). | |
* @param size spatial size for output image | |
* @param mean scalar with mean values which are subtracted from channels. Values are intended | |
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. | |
* @param scalefactor multiplier for @p images values. | |
* @param swapRB flag which indicates that swap first and last channels | |
* in 3-channel image is necessary. | |
* @param crop flag which indicates whether image will be cropped after resize or not | |
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U. | |
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding | |
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed. | |
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. | |
* @returns 4-dimensional Mat with NCHW dimensions order. | |
*/ | |
CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0, | |
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, | |
int ddepth=CV_32F); | |
/** @brief Creates 4-dimensional blob from series of images. | |
* @details This is an overloaded member function, provided for convenience. | |
* It differs from the above function only in what argument(s) it accepts. | |
*/ | |
CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob, | |
double scalefactor=1.0, Size size = Size(), | |
const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, | |
int ddepth=CV_32F); | |
/** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure | |
* (std::vector<cv::Mat>). | |
* @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from | |
* which you would like to extract the images. | |
* @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision | |
* (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension | |
* of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth). | |
*/ | |
CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_); | |
/** @brief Convert all weights of Caffe network to half precision floating point. | |
* @param src Path to origin model from Caffe framework contains single | |
* precision floating point weights (usually has `.caffemodel` extension). | |
* @param dst Path to destination model with updated weights. | |
* @param layersTypes Set of layers types which parameters will be converted. | |
* By default, converts only Convolutional and Fully-Connected layers' | |
* weights. | |
* | |
* @note Shrinked model has no origin float32 weights so it can't be used | |
* in origin Caffe framework anymore. However the structure of data | |
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe. | |
* So the resulting model may be used there. | |
*/ | |
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst, | |
const std::vector<String>& layersTypes = std::vector<String>()); | |
/** @brief Create a text representation for a binary network stored in protocol buffer format. | |
* @param[in] model A path to binary network. | |
* @param[in] output A path to output text file to be created. | |
* | |
* @note To reduce output file size, trained weights are not included. | |
*/ | |
CV_EXPORTS_W void writeTextGraph(const String& model, const String& output); | |
/** @brief Performs non maximum suppression given boxes and corresponding scores. | |
* @param bboxes a set of bounding boxes to apply NMS. | |
* @param scores a set of corresponding confidences. | |
* @param score_threshold a threshold used to filter boxes by score. | |
* @param nms_threshold a threshold used in non maximum suppression. | |
* @param indices the kept indices of bboxes after NMS. | |
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. | |
* @param top_k if `>0`, keep at most @p top_k picked indices. | |
*/ | |
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, | |
const float score_threshold, const float nms_threshold, | |
CV_OUT std::vector<int>& indices, | |
const float eta = 1.f, const int top_k = 0); | |
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, | |
const float score_threshold, const float nms_threshold, | |
CV_OUT std::vector<int>& indices, | |
const float eta = 1.f, const int top_k = 0); | |
CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores, | |
const float score_threshold, const float nms_threshold, | |
CV_OUT std::vector<int>& indices, | |
const float eta = 1.f, const int top_k = 0); | |
/** @brief Release a Myriad device is binded by OpenCV. | |
* | |
* Single Myriad device cannot be shared across multiple processes which uses | |
* Inference Engine's Myriad plugin. | |
*/ | |
CV_EXPORTS_W void resetMyriadDevice(); | |
//! @} | |
CV__DNN_EXPERIMENTAL_NS_END | |
} | |
} | |