rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/3rdparty
/opencv
/opencv-linux-aarch64
/include
/opencv2
/objdetect.hpp
/*M/////////////////////////////////////////////////////////////////////////////////////// | |
// | |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
// | |
// By downloading, copying, installing or using the software you agree to this license. | |
// If you do not agree to this license, do not download, install, | |
// copy or use the software. | |
// | |
// | |
// License Agreement | |
// For Open Source Computer Vision Library | |
// | |
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | |
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. | |
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. | |
// Third party copyrights are property of their respective owners. | |
// | |
// Redistribution and use in source and binary forms, with or without modification, | |
// are permitted provided that the following conditions are met: | |
// | |
// * Redistribution's of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// | |
// * Redistribution's in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// | |
// * The name of the copyright holders may not be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// | |
// This software is provided by the copyright holders and contributors "as is" and | |
// any express or implied warranties, including, but not limited to, the implied | |
// warranties of merchantability and fitness for a particular purpose are disclaimed. | |
// In no event shall the Intel Corporation or contributors be liable for any direct, | |
// indirect, incidental, special, exemplary, or consequential damages | |
// (including, but not limited to, procurement of substitute goods or services; | |
// loss of use, data, or profits; or business interruption) however caused | |
// and on any theory of liability, whether in contract, strict liability, | |
// or tort (including negligence or otherwise) arising in any way out of | |
// the use of this software, even if advised of the possibility of such damage. | |
// | |
//M*/ | |
/** | |
@defgroup objdetect Object Detection | |
Haar Feature-based Cascade Classifier for Object Detection | |
---------------------------------------------------------- | |
The object detector described below has been initially proposed by Paul Viola @cite Viola01 and | |
improved by Rainer Lienhart @cite Lienhart02 . | |
First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is | |
trained with a few hundred sample views of a particular object (i.e., a face or a car), called | |
positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary | |
images of the same size. | |
After a classifier is trained, it can be applied to a region of interest (of the same size as used | |
during the training) in an input image. The classifier outputs a "1" if the region is likely to show | |
the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can | |
move the search window across the image and check every location using the classifier. The | |
classifier is designed so that it can be easily "resized" in order to be able to find the objects of | |
interest at different sizes, which is more efficient than resizing the image itself. So, to find an | |
object of an unknown size in the image the scan procedure should be done several times at different | |
scales. | |
The word "cascade" in the classifier name means that the resultant classifier consists of several | |
simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some | |
stage the candidate is rejected or all the stages are passed. The word "boosted" means that the | |
classifiers at every stage of the cascade are complex themselves and they are built out of basic | |
classifiers using one of four different boosting techniques (weighted voting). Currently Discrete | |
Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are | |
decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic | |
classifiers, and are calculated as described below. The current algorithm uses the following | |
Haar-like features: | |
 | |
The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within | |
the region of interest and the scale (this scale is not the same as the scale used at the detection | |
stage, though these two scales are multiplied). For example, in the case of the third line feature | |
(2c) the response is calculated as the difference between the sum of image pixels under the | |
rectangle covering the whole feature (including the two white stripes and the black stripe in the | |
middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to | |
compensate for the differences in the size of areas. The sums of pixel values over a rectangular | |
regions are calculated rapidly using integral images (see below and the integral description). | |
To see the object detector at work, have a look at the facedetect demo: | |
<https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp> | |
The following reference is for the detection part only. There is a separate application called | |
opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. | |
@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in | |
addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection | |
using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at | |
<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf> | |
@{ | |
@defgroup objdetect_c C API | |
@} | |
*/ | |
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; | |
namespace cv | |
{ | |
//! @addtogroup objdetect | |
//! @{ | |
///////////////////////////// Object Detection //////////////////////////// | |
//! class for grouping object candidates, detected by Cascade Classifier, HOG etc. | |
//! instance of the class is to be passed to cv::partition (see cxoperations.hpp) | |
class CV_EXPORTS SimilarRects | |
{ | |
public: | |
SimilarRects(double _eps) : eps(_eps) {} | |
inline bool operator()(const Rect& r1, const Rect& r2) const | |
{ | |
double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; | |
return std::abs(r1.x - r2.x) <= delta && | |
std::abs(r1.y - r2.y) <= delta && | |
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && | |
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; | |
} | |
double eps; | |
}; | |
/** @brief Groups the object candidate rectangles. | |
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped | |
rectangles. (The Python list is not modified in place.) | |
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a | |
group of rectangles to retain it. | |
@param eps Relative difference between sides of the rectangles to merge them into a group. | |
The function is a wrapper for the generic function partition . It clusters all the input rectangles | |
using the rectangle equivalence criteria that combines rectangles with similar sizes and similar | |
locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If | |
\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small | |
clusters containing less than or equal to groupThreshold rectangles are rejected. In each other | |
cluster, the average rectangle is computed and put into the output rectangle list. | |
*/ | |
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); | |
/** @overload */ | |
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, | |
int groupThreshold, double eps = 0.2); | |
/** @overload */ | |
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, | |
double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); | |
/** @overload */ | |
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, | |
std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); | |
/** @overload */ | |
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, | |
std::vector<double>& foundScales, | |
double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); | |
template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const; | |
enum { CASCADE_DO_CANNY_PRUNING = 1, | |
CASCADE_SCALE_IMAGE = 2, | |
CASCADE_FIND_BIGGEST_OBJECT = 4, | |
CASCADE_DO_ROUGH_SEARCH = 8 | |
}; | |
class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm | |
{ | |
public: | |
virtual ~BaseCascadeClassifier(); | |
virtual bool empty() const CV_OVERRIDE = 0; | |
virtual bool load( const String& filename ) = 0; | |
virtual void detectMultiScale( InputArray image, | |
CV_OUT std::vector<Rect>& objects, | |
double scaleFactor, | |
int minNeighbors, int flags, | |
Size minSize, Size maxSize ) = 0; | |
virtual void detectMultiScale( InputArray image, | |
CV_OUT std::vector<Rect>& objects, | |
CV_OUT std::vector<int>& numDetections, | |
double scaleFactor, | |
int minNeighbors, int flags, | |
Size minSize, Size maxSize ) = 0; | |
virtual void detectMultiScale( InputArray image, | |
CV_OUT std::vector<Rect>& objects, | |
CV_OUT std::vector<int>& rejectLevels, | |
CV_OUT std::vector<double>& levelWeights, | |
double scaleFactor, | |
int minNeighbors, int flags, | |
Size minSize, Size maxSize, | |
bool outputRejectLevels ) = 0; | |
virtual bool isOldFormatCascade() const = 0; | |
virtual Size getOriginalWindowSize() const = 0; | |
virtual int getFeatureType() const = 0; | |
virtual void* getOldCascade() = 0; | |
class CV_EXPORTS MaskGenerator | |
{ | |
public: | |
virtual ~MaskGenerator() {} | |
virtual Mat generateMask(const Mat& src)=0; | |
virtual void initializeMask(const Mat& /*src*/) { } | |
}; | |
virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; | |
virtual Ptr<MaskGenerator> getMaskGenerator() = 0; | |
}; | |
/** @example facedetect.cpp | |
This program demonstrates usage of the Cascade classifier class | |
\image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254 | |
*/ | |
/** @brief Cascade classifier class for object detection. | |
*/ | |
class CV_EXPORTS_W CascadeClassifier | |
{ | |
public: | |
CV_WRAP CascadeClassifier(); | |
/** @brief Loads a classifier from a file. | |
@param filename Name of the file from which the classifier is loaded. | |
*/ | |
CV_WRAP CascadeClassifier(const String& filename); | |
~CascadeClassifier(); | |
/** @brief Checks whether the classifier has been loaded. | |
*/ | |
CV_WRAP bool empty() const; | |
/** @brief Loads a classifier from a file. | |
@param filename Name of the file from which the classifier is loaded. The file may contain an old | |
HAAR classifier trained by the haartraining application or a new cascade classifier trained by the | |
traincascade application. | |
*/ | |
CV_WRAP bool load( const String& filename ); | |
/** @brief Reads a classifier from a FileStorage node. | |
@note The file may contain a new cascade classifier (trained traincascade application) only. | |
*/ | |
CV_WRAP bool read( const FileNode& node ); | |
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list | |
of rectangles. | |
@param image Matrix of the type CV_8U containing an image where objects are detected. | |
@param objects Vector of rectangles where each rectangle contains the detected object, the | |
rectangles may be partially outside the original image. | |
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale. | |
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have | |
to retain it. | |
@param flags Parameter with the same meaning for an old cascade as in the function | |
cvHaarDetectObjects. It is not used for a new cascade. | |
@param minSize Minimum possible object size. Objects smaller than that are ignored. | |
@param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. | |
The function is parallelized with the TBB library. | |
@note | |
- (Python) A face detection example using cascade classifiers can be found at | |
opencv_source_code/samples/python/facedetect.py | |
*/ | |
CV_WRAP void detectMultiScale( InputArray image, | |
CV_OUT std::vector<Rect>& objects, | |
double scaleFactor = 1.1, | |
int minNeighbors = 3, int flags = 0, | |
Size minSize = Size(), | |
Size maxSize = Size() ); | |
/** @overload | |
@param image Matrix of the type CV_8U containing an image where objects are detected. | |
@param objects Vector of rectangles where each rectangle contains the detected object, the | |
rectangles may be partially outside the original image. | |
@param numDetections Vector of detection numbers for the corresponding objects. An object's number | |
of detections is the number of neighboring positively classified rectangles that were joined | |
together to form the object. | |
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale. | |
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have | |
to retain it. | |
@param flags Parameter with the same meaning for an old cascade as in the function | |
cvHaarDetectObjects. It is not used for a new cascade. | |
@param minSize Minimum possible object size. Objects smaller than that are ignored. | |
@param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. | |
*/ | |
CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, | |
CV_OUT std::vector<Rect>& objects, | |
CV_OUT std::vector<int>& numDetections, | |
double scaleFactor=1.1, | |
int minNeighbors=3, int flags=0, | |
Size minSize=Size(), | |
Size maxSize=Size() ); | |
/** @overload | |
This function allows you to retrieve the final stage decision certainty of classification. | |
For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter. | |
For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage. | |
This value can then be used to separate strong from weaker classifications. | |
A code sample on how to use it efficiently can be found below: | |
@code | |
Mat img; | |
vector<double> weights; | |
vector<int> levels; | |
vector<Rect> detections; | |
CascadeClassifier model("/path/to/your/model.xml"); | |
model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true); | |
cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl; | |
@endcode | |
*/ | |
CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, | |
CV_OUT std::vector<Rect>& objects, | |
CV_OUT std::vector<int>& rejectLevels, | |
CV_OUT std::vector<double>& levelWeights, | |
double scaleFactor = 1.1, | |
int minNeighbors = 3, int flags = 0, | |
Size minSize = Size(), | |
Size maxSize = Size(), | |
bool outputRejectLevels = false ); | |
CV_WRAP bool isOldFormatCascade() const; | |
CV_WRAP Size getOriginalWindowSize() const; | |
CV_WRAP int getFeatureType() const; | |
void* getOldCascade(); | |
CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); | |
void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); | |
Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); | |
Ptr<BaseCascadeClassifier> cc; | |
}; | |
CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); | |
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// | |
//! struct for detection region of interest (ROI) | |
struct DetectionROI | |
{ | |
//! scale(size) of the bounding box | |
double scale; | |
//! set of requested locations to be evaluated | |
std::vector<cv::Point> locations; | |
//! vector that will contain confidence values for each location | |
std::vector<double> confidences; | |
}; | |
/**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. | |
the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 . | |
useful links: | |
https://hal.inria.fr/inria-00548512/document/ | |
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients | |
https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor | |
http://www.learnopencv.com/histogram-of-oriented-gradients | |
http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial | |
*/ | |
struct CV_EXPORTS_W HOGDescriptor | |
{ | |
public: | |
enum { L2Hys = 0 //!< Default histogramNormType | |
}; | |
enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value. | |
}; | |
/**@brief Creates the HOG descriptor and detector with default params. | |
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9, 1 ) | |
*/ | |
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), | |
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), | |
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), | |
free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) | |
{} | |
/** @overload | |
@param _winSize sets winSize with given value. | |
@param _blockSize sets blockSize with given value. | |
@param _blockStride sets blockStride with given value. | |
@param _cellSize sets cellSize with given value. | |
@param _nbins sets nbins with given value. | |
@param _derivAperture sets derivAperture with given value. | |
@param _winSigma sets winSigma with given value. | |
@param _histogramNormType sets histogramNormType with given value. | |
@param _L2HysThreshold sets L2HysThreshold with given value. | |
@param _gammaCorrection sets gammaCorrection with given value. | |
@param _nlevels sets nlevels with given value. | |
@param _signedGradient sets signedGradient with given value. | |
*/ | |
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, | |
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, | |
int _histogramNormType=HOGDescriptor::L2Hys, | |
double _L2HysThreshold=0.2, bool _gammaCorrection=false, | |
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) | |
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), | |
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), | |
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), | |
gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) | |
{} | |
/** @overload | |
@param filename the file name containing HOGDescriptor properties and coefficients of the trained classifier | |
*/ | |
CV_WRAP HOGDescriptor(const String& filename) | |
{ | |
load(filename); | |
} | |
/** @overload | |
@param d the HOGDescriptor which cloned to create a new one. | |
*/ | |
HOGDescriptor(const HOGDescriptor& d) | |
{ | |
d.copyTo(*this); | |
} | |
/**@brief Default destructor. | |
*/ | |
virtual ~HOGDescriptor() {} | |
/**@brief Returns the number of coefficients required for the classification. | |
*/ | |
CV_WRAP size_t getDescriptorSize() const; | |
/** @brief Checks if detector size equal to descriptor size. | |
*/ | |
CV_WRAP bool checkDetectorSize() const; | |
/** @brief Returns winSigma value | |
*/ | |
CV_WRAP double getWinSigma() const; | |
/**@example peopledetect.cpp | |
*/ | |
/**@brief Sets coefficients for the linear SVM classifier. | |
@param _svmdetector coefficients for the linear SVM classifier. | |
*/ | |
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); | |
/** @brief Reads HOGDescriptor parameters from a file node. | |
@param fn File node | |
*/ | |
virtual bool read(FileNode& fn); | |
/** @brief Stores HOGDescriptor parameters in a file storage. | |
@param fs File storage | |
@param objname Object name | |
*/ | |
virtual void write(FileStorage& fs, const String& objname) const; | |
/** @brief loads coefficients for the linear SVM classifier from a file | |
@param filename Name of the file to read. | |
@param objname The optional name of the node to read (if empty, the first top-level node will be used). | |
*/ | |
CV_WRAP virtual bool load(const String& filename, const String& objname = String()); | |
/** @brief saves coefficients for the linear SVM classifier to a file | |
@param filename File name | |
@param objname Object name | |
*/ | |
CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; | |
/** @brief clones the HOGDescriptor | |
@param c cloned HOGDescriptor | |
*/ | |
virtual void copyTo(HOGDescriptor& c) const; | |
/**@example train_HOG.cpp | |
*/ | |
/** @brief Computes HOG descriptors of given image. | |
@param img Matrix of the type CV_8U containing an image where HOG features will be calculated. | |
@param descriptors Matrix of the type CV_32F | |
@param winStride Window stride. It must be a multiple of block stride. | |
@param padding Padding | |
@param locations Vector of Point | |
*/ | |
CV_WRAP virtual void compute(InputArray img, | |
CV_OUT std::vector<float>& descriptors, | |
Size winStride = Size(), Size padding = Size(), | |
const std::vector<Point>& locations = std::vector<Point>()) const; | |
/** @brief Performs object detection without a multi-scale window. | |
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. | |
@param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. | |
@param weights Vector that will contain confidence values for each detected object. | |
@param hitThreshold Threshold for the distance between features and SVM classifying plane. | |
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). | |
But if the free coefficient is omitted (which is allowed), you can specify it manually here. | |
@param winStride Window stride. It must be a multiple of block stride. | |
@param padding Padding | |
@param searchLocations Vector of Point includes set of requested locations to be evaluated. | |
*/ | |
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, | |
CV_OUT std::vector<double>& weights, | |
double hitThreshold = 0, Size winStride = Size(), | |
Size padding = Size(), | |
const std::vector<Point>& searchLocations = std::vector<Point>()) const; | |
/** @brief Performs object detection without a multi-scale window. | |
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. | |
@param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. | |
@param hitThreshold Threshold for the distance between features and SVM classifying plane. | |
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). | |
But if the free coefficient is omitted (which is allowed), you can specify it manually here. | |
@param winStride Window stride. It must be a multiple of block stride. | |
@param padding Padding | |
@param searchLocations Vector of Point includes locations to search. | |
*/ | |
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, | |
double hitThreshold = 0, Size winStride = Size(), | |
Size padding = Size(), | |
const std::vector<Point>& searchLocations=std::vector<Point>()) const; | |
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list | |
of rectangles. | |
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. | |
@param foundLocations Vector of rectangles where each rectangle contains the detected object. | |
@param foundWeights Vector that will contain confidence values for each detected object. | |
@param hitThreshold Threshold for the distance between features and SVM classifying plane. | |
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). | |
But if the free coefficient is omitted (which is allowed), you can specify it manually here. | |
@param winStride Window stride. It must be a multiple of block stride. | |
@param padding Padding | |
@param scale Coefficient of the detection window increase. | |
@param finalThreshold Final threshold | |
@param useMeanshiftGrouping indicates grouping algorithm | |
*/ | |
CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, | |
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, | |
Size winStride = Size(), Size padding = Size(), double scale = 1.05, | |
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; | |
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list | |
of rectangles. | |
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. | |
@param foundLocations Vector of rectangles where each rectangle contains the detected object. | |
@param hitThreshold Threshold for the distance between features and SVM classifying plane. | |
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). | |
But if the free coefficient is omitted (which is allowed), you can specify it manually here. | |
@param winStride Window stride. It must be a multiple of block stride. | |
@param padding Padding | |
@param scale Coefficient of the detection window increase. | |
@param finalThreshold Final threshold | |
@param useMeanshiftGrouping indicates grouping algorithm | |
*/ | |
virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, | |
double hitThreshold = 0, Size winStride = Size(), | |
Size padding = Size(), double scale = 1.05, | |
double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; | |
/** @brief Computes gradients and quantized gradient orientations. | |
@param img Matrix contains the image to be computed | |
@param grad Matrix of type CV_32FC2 contains computed gradients | |
@param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations | |
@param paddingTL Padding from top-left | |
@param paddingBR Padding from bottom-right | |
*/ | |
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, | |
Size paddingTL = Size(), Size paddingBR = Size()) const; | |
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows). | |
*/ | |
CV_WRAP static std::vector<float> getDefaultPeopleDetector(); | |
/**@example hog.cpp | |
*/ | |
/** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows). | |
*/ | |
CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); | |
//! Detection window size. Align to block size and block stride. Default value is Size(64,128). | |
CV_PROP Size winSize; | |
//! Block size in pixels. Align to cell size. Default value is Size(16,16). | |
CV_PROP Size blockSize; | |
//! Block stride. It must be a multiple of cell size. Default value is Size(8,8). | |
CV_PROP Size blockStride; | |
//! Cell size. Default value is Size(8,8). | |
CV_PROP Size cellSize; | |
//! Number of bins used in the calculation of histogram of gradients. Default value is 9. | |
CV_PROP int nbins; | |
//! not documented | |
CV_PROP int derivAperture; | |
//! Gaussian smoothing window parameter. | |
CV_PROP double winSigma; | |
//! histogramNormType | |
CV_PROP int histogramNormType; | |
//! L2-Hys normalization method shrinkage. | |
CV_PROP double L2HysThreshold; | |
//! Flag to specify whether the gamma correction preprocessing is required or not. | |
CV_PROP bool gammaCorrection; | |
//! coefficients for the linear SVM classifier. | |
CV_PROP std::vector<float> svmDetector; | |
//! coefficients for the linear SVM classifier used when OpenCL is enabled | |
UMat oclSvmDetector; | |
//! not documented | |
float free_coef; | |
//! Maximum number of detection window increases. Default value is 64 | |
CV_PROP int nlevels; | |
//! Indicates signed gradient will be used or not | |
CV_PROP bool signedGradient; | |
/** @brief evaluate specified ROI and return confidence value for each location | |
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. | |
@param locations Vector of Point | |
@param foundLocations Vector of Point where each Point is detected object's top-left point. | |
@param confidences confidences | |
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually | |
it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if | |
the free coefficient is omitted (which is allowed), you can specify it manually here | |
@param winStride winStride | |
@param padding padding | |
*/ | |
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, | |
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, | |
double hitThreshold = 0, cv::Size winStride = Size(), | |
cv::Size padding = Size()) const; | |
/** @brief evaluate specified ROI and return confidence value for each location in multiple scales | |
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. | |
@param foundLocations Vector of rectangles where each rectangle contains the detected object. | |
@param locations Vector of DetectionROI | |
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified | |
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. | |
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. | |
*/ | |
virtual void detectMultiScaleROI(const cv::Mat& img, | |
CV_OUT std::vector<cv::Rect>& foundLocations, | |
std::vector<DetectionROI>& locations, | |
double hitThreshold = 0, | |
int groupThreshold = 0) const; | |
/** @brief read/parse Dalal's alt model file | |
@param modelfile Path of Dalal's alt model file. | |
*/ | |
void readALTModel(String modelfile); | |
/** @brief Groups the object candidate rectangles. | |
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.) | |
@param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.) | |
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. | |
@param eps Relative difference between sides of the rectangles to merge them into a group. | |
*/ | |
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; | |
}; | |
//! @} objdetect | |
} | |