rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/3rdparty
/opencv
/opencv-linux-aarch64
/include
/opencv2
/video
/tracking_c.h
/*M/////////////////////////////////////////////////////////////////////////////////////// | |
// | |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
// | |
// By downloading, copying, installing or using the software you agree to this license. | |
// If you do not agree to this license, do not download, install, | |
// copy or use the software. | |
// | |
// | |
// License Agreement | |
// For Open Source Computer Vision Library | |
// | |
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | |
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. | |
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. | |
// Third party copyrights are property of their respective owners. | |
// | |
// Redistribution and use in source and binary forms, with or without modification, | |
// are permitted provided that the following conditions are met: | |
// | |
// * Redistribution's of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// | |
// * Redistribution's in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// | |
// * The name of the copyright holders may not be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// | |
// This software is provided by the copyright holders and contributors "as is" and | |
// any express or implied warranties, including, but not limited to, the implied | |
// warranties of merchantability and fitness for a particular purpose are disclaimed. | |
// In no event shall the Intel Corporation or contributors be liable for any direct, | |
// indirect, incidental, special, exemplary, or consequential damages | |
// (including, but not limited to, procurement of substitute goods or services; | |
// loss of use, data, or profits; or business interruption) however caused | |
// and on any theory of liability, whether in contract, strict liability, | |
// or tort (including negligence or otherwise) arising in any way out of | |
// the use of this software, even if advised of the possibility of such damage. | |
// | |
//M*/ | |
extern "C" { | |
/** @addtogroup video_c | |
@{ | |
*/ | |
/****************************************************************************************\ | |
* Motion Analysis * | |
\****************************************************************************************/ | |
/************************************ optical flow ***************************************/ | |
/* It is Lucas & Kanade method, modified to use pyramids. | |
Also it does several iterations to get optical flow for | |
every point at every pyramid level. | |
Calculates optical flow between two images for certain set of points (i.e. | |
it is a "sparse" optical flow, which is opposite to the previous 3 methods) */ | |
CVAPI(void) cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, | |
CvArr* prev_pyr, CvArr* curr_pyr, | |
const CvPoint2D32f* prev_features, | |
CvPoint2D32f* curr_features, | |
int count, | |
CvSize win_size, | |
int level, | |
char* status, | |
float* track_error, | |
CvTermCriteria criteria, | |
int flags ); | |
/* Modification of a previous sparse optical flow algorithm to calculate | |
affine flow */ | |
CVAPI(void) cvCalcAffineFlowPyrLK( const CvArr* prev, const CvArr* curr, | |
CvArr* prev_pyr, CvArr* curr_pyr, | |
const CvPoint2D32f* prev_features, | |
CvPoint2D32f* curr_features, | |
float* matrices, int count, | |
CvSize win_size, int level, | |
char* status, float* track_error, | |
CvTermCriteria criteria, int flags ); | |
/* Estimate rigid transformation between 2 images or 2 point sets */ | |
CVAPI(int) cvEstimateRigidTransform( const CvArr* A, const CvArr* B, | |
CvMat* M, int full_affine ); | |
/* Estimate optical flow for each pixel using the two-frame G. Farneback algorithm */ | |
CVAPI(void) cvCalcOpticalFlowFarneback( const CvArr* prev, const CvArr* next, | |
CvArr* flow, double pyr_scale, int levels, | |
int winsize, int iterations, int poly_n, | |
double poly_sigma, int flags ); | |
/********************************* motion templates *************************************/ | |
/****************************************************************************************\ | |
* All the motion template functions work only with single channel images. * | |
* Silhouette image must have depth IPL_DEPTH_8U or IPL_DEPTH_8S * | |
* Motion history image must have depth IPL_DEPTH_32F, * | |
* Gradient mask - IPL_DEPTH_8U or IPL_DEPTH_8S, * | |
* Motion orientation image - IPL_DEPTH_32F * | |
* Segmentation mask - IPL_DEPTH_32F * | |
* All the angles are in degrees, all the times are in milliseconds * | |
\****************************************************************************************/ | |
/* Updates motion history image given motion silhouette */ | |
CVAPI(void) cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi, | |
double timestamp, double duration ); | |
/* Calculates gradient of the motion history image and fills | |
a mask indicating where the gradient is valid */ | |
CVAPI(void) cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation, | |
double delta1, double delta2, | |
int aperture_size CV_DEFAULT(3)); | |
/* Calculates average motion direction within a selected motion region | |
(region can be selected by setting ROIs and/or by composing a valid gradient mask | |
with the region mask) */ | |
CVAPI(double) cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask, | |
const CvArr* mhi, double timestamp, | |
double duration ); | |
/* Splits a motion history image into a few parts corresponding to separate independent motions | |
(e.g. left hand, right hand) */ | |
CVAPI(CvSeq*) cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask, | |
CvMemStorage* storage, | |
double timestamp, double seg_thresh ); | |
/****************************************************************************************\ | |
* Tracking * | |
\****************************************************************************************/ | |
/* Implements CAMSHIFT algorithm - determines object position, size and orientation | |
from the object histogram back project (extension of meanshift) */ | |
CVAPI(int) cvCamShift( const CvArr* prob_image, CvRect window, | |
CvTermCriteria criteria, CvConnectedComp* comp, | |
CvBox2D* box CV_DEFAULT(NULL) ); | |
/* Implements MeanShift algorithm - determines object position | |
from the object histogram back project */ | |
CVAPI(int) cvMeanShift( const CvArr* prob_image, CvRect window, | |
CvTermCriteria criteria, CvConnectedComp* comp ); | |
/* | |
standard Kalman filter (in G. Welch' and G. Bishop's notation): | |
x(k)=A*x(k-1)+B*u(k)+w(k) p(w)~N(0,Q) | |
z(k)=H*x(k)+v(k), p(v)~N(0,R) | |
*/ | |
typedef struct CvKalman | |
{ | |
int MP; /* number of measurement vector dimensions */ | |
int DP; /* number of state vector dimensions */ | |
int CP; /* number of control vector dimensions */ | |
/* backward compatibility fields */ | |
float* PosterState; /* =state_pre->data.fl */ | |
float* PriorState; /* =state_post->data.fl */ | |
float* DynamMatr; /* =transition_matrix->data.fl */ | |
float* MeasurementMatr; /* =measurement_matrix->data.fl */ | |
float* MNCovariance; /* =measurement_noise_cov->data.fl */ | |
float* PNCovariance; /* =process_noise_cov->data.fl */ | |
float* KalmGainMatr; /* =gain->data.fl */ | |
float* PriorErrorCovariance;/* =error_cov_pre->data.fl */ | |
float* PosterErrorCovariance;/* =error_cov_post->data.fl */ | |
float* Temp1; /* temp1->data.fl */ | |
float* Temp2; /* temp2->data.fl */ | |
CvMat* state_pre; /* predicted state (x'(k)): | |
x(k)=A*x(k-1)+B*u(k) */ | |
CvMat* state_post; /* corrected state (x(k)): | |
x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */ | |
CvMat* transition_matrix; /* state transition matrix (A) */ | |
CvMat* control_matrix; /* control matrix (B) | |
(it is not used if there is no control)*/ | |
CvMat* measurement_matrix; /* measurement matrix (H) */ | |
CvMat* process_noise_cov; /* process noise covariance matrix (Q) */ | |
CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */ | |
CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)): | |
P'(k)=A*P(k-1)*At + Q)*/ | |
CvMat* gain; /* Kalman gain matrix (K(k)): | |
K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/ | |
CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)): | |
P(k)=(I-K(k)*H)*P'(k) */ | |
CvMat* temp1; /* temporary matrices */ | |
CvMat* temp2; | |
CvMat* temp3; | |
CvMat* temp4; | |
CvMat* temp5; | |
} CvKalman; | |
/* Creates Kalman filter and sets A, B, Q, R and state to some initial values */ | |
CVAPI(CvKalman*) cvCreateKalman( int dynam_params, int measure_params, | |
int control_params CV_DEFAULT(0)); | |
/* Releases Kalman filter state */ | |
CVAPI(void) cvReleaseKalman( CvKalman** kalman); | |
/* Updates Kalman filter by time (predicts future state of the system) */ | |
CVAPI(const CvMat*) cvKalmanPredict( CvKalman* kalman, | |
const CvMat* control CV_DEFAULT(NULL)); | |
/* Updates Kalman filter by measurement | |
(corrects state of the system and internal matrices) */ | |
CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement ); | |
/** @} video_c */ | |
} // extern "C" | |