rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/3rdparty
/opencv
/opencv-linux-armhf
/include
/opencv2
/features2d.hpp
/*M/////////////////////////////////////////////////////////////////////////////////////// | |
// | |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
// | |
// By downloading, copying, installing or using the software you agree to this license. | |
// If you do not agree to this license, do not download, install, | |
// copy or use the software. | |
// | |
// | |
// License Agreement | |
// For Open Source Computer Vision Library | |
// | |
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | |
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. | |
// Third party copyrights are property of their respective owners. | |
// | |
// Redistribution and use in source and binary forms, with or without modification, | |
// are permitted provided that the following conditions are met: | |
// | |
// * Redistribution's of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// | |
// * Redistribution's in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// | |
// * The name of the copyright holders may not be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// | |
// This software is provided by the copyright holders and contributors "as is" and | |
// any express or implied warranties, including, but not limited to, the implied | |
// warranties of merchantability and fitness for a particular purpose are disclaimed. | |
// In no event shall the Intel Corporation or contributors be liable for any direct, | |
// indirect, incidental, special, exemplary, or consequential damages | |
// (including, but not limited to, procurement of substitute goods or services; | |
// loss of use, data, or profits; or business interruption) however caused | |
// and on any theory of liability, whether in contract, strict liability, | |
// or tort (including negligence or otherwise) arising in any way out of | |
// the use of this software, even if advised of the possibility of such damage. | |
// | |
//M*/ | |
/** | |
@defgroup features2d 2D Features Framework | |
@{ | |
@defgroup features2d_main Feature Detection and Description | |
@defgroup features2d_match Descriptor Matchers | |
Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to | |
easily switch between different algorithms solving the same problem. This section is devoted to | |
matching descriptors that are represented as vectors in a multidimensional space. All objects that | |
implement vector descriptor matchers inherit the DescriptorMatcher interface. | |
@note | |
- An example explaining keypoint matching can be found at | |
opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp | |
- An example on descriptor matching evaluation can be found at | |
opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp | |
- An example on one to many image matching can be found at | |
opencv_source_code/samples/cpp/matching_to_many_images.cpp | |
@defgroup features2d_draw Drawing Function of Keypoints and Matches | |
@defgroup features2d_category Object Categorization | |
This section describes approaches based on local 2D features and used to categorize objects. | |
@note | |
- A complete Bag-Of-Words sample can be found at | |
opencv_source_code/samples/cpp/bagofwords_classification.cpp | |
- (Python) An example using the features2D framework to perform object categorization can be | |
found at opencv_source_code/samples/python/find_obj.py | |
@} | |
*/ | |
namespace cv | |
{ | |
//! @addtogroup features2d | |
//! @{ | |
// //! writes vector of keypoints to the file storage | |
// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints); | |
// //! reads vector of keypoints from the specified file storage node | |
// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints); | |
/** @brief A class filters a vector of keypoints. | |
Because now it is difficult to provide a convenient interface for all usage scenarios of the | |
keypoints filter class, it has only several needed by now static methods. | |
*/ | |
class CV_EXPORTS KeyPointsFilter | |
{ | |
public: | |
KeyPointsFilter(){} | |
/* | |
* Remove keypoints within borderPixels of an image edge. | |
*/ | |
static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize ); | |
/* | |
* Remove keypoints of sizes out of range. | |
*/ | |
static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, | |
float maxSize=FLT_MAX ); | |
/* | |
* Remove keypoints from some image by mask for pixels of this image. | |
*/ | |
static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask ); | |
/* | |
* Remove duplicated keypoints. | |
*/ | |
static void removeDuplicated( std::vector<KeyPoint>& keypoints ); | |
/* | |
* Remove duplicated keypoints and sort the remaining keypoints | |
*/ | |
static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints ); | |
/* | |
* Retain the specified number of the best keypoints (according to the response) | |
*/ | |
static void retainBest( std::vector<KeyPoint>& keypoints, int npoints ); | |
}; | |
/************************************ Base Classes ************************************/ | |
/** @brief Abstract base class for 2D image feature detectors and descriptor extractors | |
*/ | |
class CV_EXPORTS_W Feature2D : public Algorithm | |
class CV_EXPORTS_W Feature2D : public virtual Algorithm | |
{ | |
public: | |
virtual ~Feature2D(); | |
/** @brief Detects keypoints in an image (first variant) or image set (second variant). | |
@param image Image. | |
@param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set | |
of keypoints detected in images[i] . | |
@param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer | |
matrix with non-zero values in the region of interest. | |
*/ | |
CV_WRAP virtual void detect( InputArray image, | |
CV_OUT std::vector<KeyPoint>& keypoints, | |
InputArray mask=noArray() ); | |
/** @overload | |
@param images Image set. | |
@param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set | |
of keypoints detected in images[i] . | |
@param masks Masks for each input image specifying where to look for keypoints (optional). | |
masks[i] is a mask for images[i]. | |
*/ | |
CV_WRAP virtual void detect( InputArrayOfArrays images, | |
CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, | |
InputArrayOfArrays masks=noArray() ); | |
/** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set | |
(second variant). | |
@param image Image. | |
@param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be | |
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint | |
with several dominant orientations (for each orientation). | |
@param descriptors Computed descriptors. In the second variant of the method descriptors[i] are | |
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the | |
descriptor for keypoint j-th keypoint. | |
*/ | |
CV_WRAP virtual void compute( InputArray image, | |
CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, | |
OutputArray descriptors ); | |
/** @overload | |
@param images Image set. | |
@param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be | |
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint | |
with several dominant orientations (for each orientation). | |
@param descriptors Computed descriptors. In the second variant of the method descriptors[i] are | |
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the | |
descriptor for keypoint j-th keypoint. | |
*/ | |
CV_WRAP virtual void compute( InputArrayOfArrays images, | |
CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, | |
OutputArrayOfArrays descriptors ); | |
/** Detects keypoints and computes the descriptors */ | |
CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask, | |
CV_OUT std::vector<KeyPoint>& keypoints, | |
OutputArray descriptors, | |
bool useProvidedKeypoints=false ); | |
CV_WRAP virtual int descriptorSize() const; | |
CV_WRAP virtual int descriptorType() const; | |
CV_WRAP virtual int defaultNorm() const; | |
CV_WRAP void write( const String& fileName ) const; | |
CV_WRAP void read( const String& fileName ); | |
virtual void write( FileStorage&) const CV_OVERRIDE; | |
// see corresponding cv::Algorithm method | |
CV_WRAP virtual void read( const FileNode&) CV_OVERRIDE; | |
//! Return true if detector object is empty | |
CV_WRAP virtual bool empty() const CV_OVERRIDE; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
// see corresponding cv::Algorithm method | |
CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); } | |
}; | |
/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch | |
between different algorithms solving the same problem. All objects that implement keypoint detectors | |
inherit the FeatureDetector interface. */ | |
typedef Feature2D FeatureDetector; | |
/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you | |
to easily switch between different algorithms solving the same problem. This section is devoted to | |
computing descriptors represented as vectors in a multidimensional space. All objects that implement | |
the vector descriptor extractors inherit the DescriptorExtractor interface. | |
*/ | |
typedef Feature2D DescriptorExtractor; | |
//! @addtogroup features2d_main | |
//! @{ | |
/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 . | |
*/ | |
class CV_EXPORTS_W BRISK : public Feature2D | |
{ | |
public: | |
/** @brief The BRISK constructor | |
@param thresh AGAST detection threshold score. | |
@param octaves detection octaves. Use 0 to do single scale. | |
@param patternScale apply this scale to the pattern used for sampling the neighbourhood of a | |
keypoint. | |
*/ | |
CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f); | |
/** @brief The BRISK constructor for a custom pattern | |
@param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for | |
keypoint scale 1). | |
@param numberList defines the number of sampling points on the sampling circle. Must be the same | |
size as radiusList.. | |
@param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint | |
scale 1). | |
@param dMin threshold for the long pairings used for orientation determination (in pixels for | |
keypoint scale 1). | |
@param indexChange index remapping of the bits. */ | |
CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList, | |
float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>()); | |
/** @brief The BRISK constructor for a custom pattern, detection threshold and octaves | |
@param thresh AGAST detection threshold score. | |
@param octaves detection octaves. Use 0 to do single scale. | |
@param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for | |
keypoint scale 1). | |
@param numberList defines the number of sampling points on the sampling circle. Must be the same | |
size as radiusList.. | |
@param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint | |
scale 1). | |
@param dMin threshold for the long pairings used for orientation determination (in pixels for | |
keypoint scale 1). | |
@param indexChange index remapping of the bits. */ | |
CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList, | |
const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f, | |
const std::vector<int>& indexChange=std::vector<int>()); | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor | |
described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects | |
the strongest features using FAST or Harris response, finds their orientation using first-order | |
moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or | |
k-tuples) are rotated according to the measured orientation). | |
*/ | |
class CV_EXPORTS_W ORB : public Feature2D | |
{ | |
public: | |
enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 }; | |
/** @brief The ORB constructor | |
@param nfeatures The maximum number of features to retain. | |
@param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical | |
pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor | |
will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor | |
will mean that to cover certain scale range you will need more pyramid levels and so the speed | |
will suffer. | |
@param nlevels The number of pyramid levels. The smallest level will have linear size equal to | |
input_image_linear_size/pow(scaleFactor, nlevels - firstLevel). | |
@param edgeThreshold This is size of the border where the features are not detected. It should | |
roughly match the patchSize parameter. | |
@param firstLevel The level of pyramid to put source image to. Previous layers are filled | |
with upscaled source image. | |
@param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The | |
default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, | |
so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 | |
random points (of course, those point coordinates are random, but they are generated from the | |
pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel | |
rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such | |
output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, | |
denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each | |
bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3). | |
@param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features | |
(the score is written to KeyPoint::score and is used to retain best nfeatures features); | |
FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, | |
but it is a little faster to compute. | |
@param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller | |
pyramid layers the perceived image area covered by a feature will be larger. | |
@param fastThreshold | |
*/ | |
CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31, | |
int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20); | |
CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; | |
CV_WRAP virtual int getMaxFeatures() const = 0; | |
CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0; | |
CV_WRAP virtual double getScaleFactor() const = 0; | |
CV_WRAP virtual void setNLevels(int nlevels) = 0; | |
CV_WRAP virtual int getNLevels() const = 0; | |
CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0; | |
CV_WRAP virtual int getEdgeThreshold() const = 0; | |
CV_WRAP virtual void setFirstLevel(int firstLevel) = 0; | |
CV_WRAP virtual int getFirstLevel() const = 0; | |
CV_WRAP virtual void setWTA_K(int wta_k) = 0; | |
CV_WRAP virtual int getWTA_K() const = 0; | |
CV_WRAP virtual void setScoreType(int scoreType) = 0; | |
CV_WRAP virtual int getScoreType() const = 0; | |
CV_WRAP virtual void setPatchSize(int patchSize) = 0; | |
CV_WRAP virtual int getPatchSize() const = 0; | |
CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0; | |
CV_WRAP virtual int getFastThreshold() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @brief Maximally stable extremal region extractor | |
The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki | |
article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)). | |
- there are two different implementation of %MSER: one for grey image, one for color image | |
- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster | |
than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop. | |
- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower | |
than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source | |
code which is distributed under GPL. | |
- (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py | |
*/ | |
class CV_EXPORTS_W MSER : public Feature2D | |
{ | |
public: | |
/** @brief Full consturctor for %MSER detector | |
@param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$ | |
@param _min_area prune the area which smaller than minArea | |
@param _max_area prune the area which bigger than maxArea | |
@param _max_variation prune the area have similar size to its children | |
@param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity | |
@param _max_evolution for color image, the evolution steps | |
@param _area_threshold for color image, the area threshold to cause re-initialize | |
@param _min_margin for color image, ignore too small margin | |
@param _edge_blur_size for color image, the aperture size for edge blur | |
*/ | |
CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400, | |
double _max_variation=0.25, double _min_diversity=.2, | |
int _max_evolution=200, double _area_threshold=1.01, | |
double _min_margin=0.003, int _edge_blur_size=5 ); | |
/** @brief Detect %MSER regions | |
@param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3) | |
@param msers resulting list of point sets | |
@param bboxes resulting bounding boxes | |
*/ | |
CV_WRAP virtual void detectRegions( InputArray image, | |
CV_OUT std::vector<std::vector<Point> >& msers, | |
CV_OUT std::vector<Rect>& bboxes ) = 0; | |
CV_WRAP virtual void setDelta(int delta) = 0; | |
CV_WRAP virtual int getDelta() const = 0; | |
CV_WRAP virtual void setMinArea(int minArea) = 0; | |
CV_WRAP virtual int getMinArea() const = 0; | |
CV_WRAP virtual void setMaxArea(int maxArea) = 0; | |
CV_WRAP virtual int getMaxArea() const = 0; | |
CV_WRAP virtual void setPass2Only(bool f) = 0; | |
CV_WRAP virtual bool getPass2Only() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @overload */ | |
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, | |
int threshold, bool nonmaxSuppression=true ); | |
/** @brief Detects corners using the FAST algorithm | |
@param image grayscale image where keypoints (corners) are detected. | |
@param keypoints keypoints detected on the image. | |
@param threshold threshold on difference between intensity of the central pixel and pixels of a | |
circle around this pixel. | |
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners | |
(keypoints). | |
@param type one of the three neighborhoods as defined in the paper: | |
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, | |
FastFeatureDetector::TYPE_5_8 | |
Detects corners using the FAST algorithm by @cite Rosten06 . | |
@note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8, | |
cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner | |
detection, use cv2.FAST.detect() method. | |
*/ | |
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, | |
int threshold, bool nonmaxSuppression, int type ); | |
//! @} features2d_main | |
//! @addtogroup features2d_main | |
//! @{ | |
/** @brief Wrapping class for feature detection using the FAST method. : | |
*/ | |
class CV_EXPORTS_W FastFeatureDetector : public Feature2D | |
{ | |
public: | |
enum | |
{ | |
TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2, | |
THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002, | |
}; | |
CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10, | |
bool nonmaxSuppression=true, | |
int type=FastFeatureDetector::TYPE_9_16 ); | |
CV_WRAP virtual void setThreshold(int threshold) = 0; | |
CV_WRAP virtual int getThreshold() const = 0; | |
CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; | |
CV_WRAP virtual bool getNonmaxSuppression() const = 0; | |
CV_WRAP virtual void setType(int type) = 0; | |
CV_WRAP virtual int getType() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @overload */ | |
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, | |
int threshold, bool nonmaxSuppression=true ); | |
/** @brief Detects corners using the AGAST algorithm | |
@param image grayscale image where keypoints (corners) are detected. | |
@param keypoints keypoints detected on the image. | |
@param threshold threshold on difference between intensity of the central pixel and pixels of a | |
circle around this pixel. | |
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners | |
(keypoints). | |
@param type one of the four neighborhoods as defined in the paper: | |
AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d, | |
AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16 | |
For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results. | |
The 32-bit binary tree tables were generated automatically from original code using perl script. | |
The perl script and examples of tree generation are placed in features2d/doc folder. | |
Detects corners using the AGAST algorithm by @cite mair2010_agast . | |
*/ | |
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, | |
int threshold, bool nonmaxSuppression, int type ); | |
//! @} features2d_main | |
//! @addtogroup features2d_main | |
//! @{ | |
/** @brief Wrapping class for feature detection using the AGAST method. : | |
*/ | |
class CV_EXPORTS_W AgastFeatureDetector : public Feature2D | |
{ | |
public: | |
enum | |
{ | |
AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3, | |
THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001, | |
}; | |
CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10, | |
bool nonmaxSuppression=true, | |
int type=AgastFeatureDetector::OAST_9_16 ); | |
CV_WRAP virtual void setThreshold(int threshold) = 0; | |
CV_WRAP virtual int getThreshold() const = 0; | |
CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; | |
CV_WRAP virtual bool getNonmaxSuppression() const = 0; | |
CV_WRAP virtual void setType(int type) = 0; | |
CV_WRAP virtual int getType() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. : | |
*/ | |
class CV_EXPORTS_W GFTTDetector : public Feature2D | |
{ | |
public: | |
CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, | |
int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); | |
CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance, | |
int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 ); | |
CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; | |
CV_WRAP virtual int getMaxFeatures() const = 0; | |
CV_WRAP virtual void setQualityLevel(double qlevel) = 0; | |
CV_WRAP virtual double getQualityLevel() const = 0; | |
CV_WRAP virtual void setMinDistance(double minDistance) = 0; | |
CV_WRAP virtual double getMinDistance() const = 0; | |
CV_WRAP virtual void setBlockSize(int blockSize) = 0; | |
CV_WRAP virtual int getBlockSize() const = 0; | |
CV_WRAP virtual void setHarrisDetector(bool val) = 0; | |
CV_WRAP virtual bool getHarrisDetector() const = 0; | |
CV_WRAP virtual void setK(double k) = 0; | |
CV_WRAP virtual double getK() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @brief Class for extracting blobs from an image. : | |
The class implements a simple algorithm for extracting blobs from an image: | |
1. Convert the source image to binary images by applying thresholding with several thresholds from | |
minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between | |
neighboring thresholds. | |
2. Extract connected components from every binary image by findContours and calculate their | |
centers. | |
3. Group centers from several binary images by their coordinates. Close centers form one group that | |
corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter. | |
4. From the groups, estimate final centers of blobs and their radiuses and return as locations and | |
sizes of keypoints. | |
This class performs several filtrations of returned blobs. You should set filterBy\* to true/false | |
to turn on/off corresponding filtration. Available filtrations: | |
- **By color**. This filter compares the intensity of a binary image at the center of a blob to | |
blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs | |
and blobColor = 255 to extract light blobs. | |
- **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive). | |
- **By circularity**. Extracted blobs have circularity | |
(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and | |
maxCircularity (exclusive). | |
- **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio | |
between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive). | |
- **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between | |
minConvexity (inclusive) and maxConvexity (exclusive). | |
Default values of parameters are tuned to extract dark circular blobs. | |
*/ | |
class CV_EXPORTS_W SimpleBlobDetector : public Feature2D | |
{ | |
public: | |
struct CV_EXPORTS_W_SIMPLE Params | |
{ | |
CV_WRAP Params(); | |
CV_PROP_RW float thresholdStep; | |
CV_PROP_RW float minThreshold; | |
CV_PROP_RW float maxThreshold; | |
CV_PROP_RW size_t minRepeatability; | |
CV_PROP_RW float minDistBetweenBlobs; | |
CV_PROP_RW bool filterByColor; | |
CV_PROP_RW uchar blobColor; | |
CV_PROP_RW bool filterByArea; | |
CV_PROP_RW float minArea, maxArea; | |
CV_PROP_RW bool filterByCircularity; | |
CV_PROP_RW float minCircularity, maxCircularity; | |
CV_PROP_RW bool filterByInertia; | |
CV_PROP_RW float minInertiaRatio, maxInertiaRatio; | |
CV_PROP_RW bool filterByConvexity; | |
CV_PROP_RW float minConvexity, maxConvexity; | |
void read( const FileNode& fn ); | |
void write( FileStorage& fs ) const; | |
}; | |
CV_WRAP static Ptr<SimpleBlobDetector> | |
create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params()); | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
//! @} features2d_main | |
//! @addtogroup features2d_main | |
//! @{ | |
/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 . | |
@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo | |
F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision | |
(ECCV), Fiorenze, Italy, October 2012. | |
*/ | |
class CV_EXPORTS_W KAZE : public Feature2D | |
{ | |
public: | |
enum | |
{ | |
DIFF_PM_G1 = 0, | |
DIFF_PM_G2 = 1, | |
DIFF_WEICKERT = 2, | |
DIFF_CHARBONNIER = 3 | |
}; | |
/** @brief The KAZE constructor | |
@param extended Set to enable extraction of extended (128-byte) descriptor. | |
@param upright Set to enable use of upright descriptors (non rotation-invariant). | |
@param threshold Detector response threshold to accept point | |
@param nOctaves Maximum octave evolution of the image | |
@param nOctaveLayers Default number of sublevels per scale level | |
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or | |
DIFF_CHARBONNIER | |
*/ | |
CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false, | |
float threshold = 0.001f, | |
int nOctaves = 4, int nOctaveLayers = 4, | |
int diffusivity = KAZE::DIFF_PM_G2); | |
CV_WRAP virtual void setExtended(bool extended) = 0; | |
CV_WRAP virtual bool getExtended() const = 0; | |
CV_WRAP virtual void setUpright(bool upright) = 0; | |
CV_WRAP virtual bool getUpright() const = 0; | |
CV_WRAP virtual void setThreshold(double threshold) = 0; | |
CV_WRAP virtual double getThreshold() const = 0; | |
CV_WRAP virtual void setNOctaves(int octaves) = 0; | |
CV_WRAP virtual int getNOctaves() const = 0; | |
CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; | |
CV_WRAP virtual int getNOctaveLayers() const = 0; | |
CV_WRAP virtual void setDiffusivity(int diff) = 0; | |
CV_WRAP virtual int getDiffusivity() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13. | |
@details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe. | |
@note When you need descriptors use Feature2D::detectAndCompute, which | |
provides better performance. When using Feature2D::detect followed by | |
Feature2D::compute scale space pyramid is computed twice. | |
@note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm | |
will use OpenCL. | |
@note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear | |
Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In | |
British Machine Vision Conference (BMVC), Bristol, UK, September 2013. | |
*/ | |
class CV_EXPORTS_W AKAZE : public Feature2D | |
{ | |
public: | |
// AKAZE descriptor type | |
enum | |
{ | |
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation | |
DESCRIPTOR_KAZE = 3, | |
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation | |
DESCRIPTOR_MLDB = 5 | |
}; | |
/** @brief The AKAZE constructor | |
@param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE, | |
DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT. | |
@param descriptor_size Size of the descriptor in bits. 0 -\> Full size | |
@param descriptor_channels Number of channels in the descriptor (1, 2, 3) | |
@param threshold Detector response threshold to accept point | |
@param nOctaves Maximum octave evolution of the image | |
@param nOctaveLayers Default number of sublevels per scale level | |
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or | |
DIFF_CHARBONNIER | |
*/ | |
CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB, | |
int descriptor_size = 0, int descriptor_channels = 3, | |
float threshold = 0.001f, int nOctaves = 4, | |
int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2); | |
CV_WRAP virtual void setDescriptorType(int dtype) = 0; | |
CV_WRAP virtual int getDescriptorType() const = 0; | |
CV_WRAP virtual void setDescriptorSize(int dsize) = 0; | |
CV_WRAP virtual int getDescriptorSize() const = 0; | |
CV_WRAP virtual void setDescriptorChannels(int dch) = 0; | |
CV_WRAP virtual int getDescriptorChannels() const = 0; | |
CV_WRAP virtual void setThreshold(double threshold) = 0; | |
CV_WRAP virtual double getThreshold() const = 0; | |
CV_WRAP virtual void setNOctaves(int octaves) = 0; | |
CV_WRAP virtual int getNOctaves() const = 0; | |
CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; | |
CV_WRAP virtual int getNOctaveLayers() const = 0; | |
CV_WRAP virtual void setDiffusivity(int diff) = 0; | |
CV_WRAP virtual int getDiffusivity() const = 0; | |
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE; | |
}; | |
//! @} features2d_main | |
/****************************************************************************************\ | |
* Distance * | |
\****************************************************************************************/ | |
template<typename T> | |
struct CV_EXPORTS Accumulator | |
{ | |
typedef T Type; | |
}; | |
template<> struct Accumulator<unsigned char> { typedef float Type; }; | |
template<> struct Accumulator<unsigned short> { typedef float Type; }; | |
template<> struct Accumulator<char> { typedef float Type; }; | |
template<> struct Accumulator<short> { typedef float Type; }; | |
/* | |
* Squared Euclidean distance functor | |
*/ | |
template<class T> | |
struct CV_EXPORTS SL2 | |
{ | |
enum { normType = NORM_L2SQR }; | |
typedef T ValueType; | |
typedef typename Accumulator<T>::Type ResultType; | |
ResultType operator()( const T* a, const T* b, int size ) const | |
{ | |
return normL2Sqr<ValueType, ResultType>(a, b, size); | |
} | |
}; | |
/* | |
* Euclidean distance functor | |
*/ | |
template<class T> | |
struct L2 | |
{ | |
enum { normType = NORM_L2 }; | |
typedef T ValueType; | |
typedef typename Accumulator<T>::Type ResultType; | |
ResultType operator()( const T* a, const T* b, int size ) const | |
{ | |
return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size)); | |
} | |
}; | |
/* | |
* Manhattan distance (city block distance) functor | |
*/ | |
template<class T> | |
struct L1 | |
{ | |
enum { normType = NORM_L1 }; | |
typedef T ValueType; | |
typedef typename Accumulator<T>::Type ResultType; | |
ResultType operator()( const T* a, const T* b, int size ) const | |
{ | |
return normL1<ValueType, ResultType>(a, b, size); | |
} | |
}; | |
/****************************************************************************************\ | |
* DescriptorMatcher * | |
\****************************************************************************************/ | |
//! @addtogroup features2d_match | |
//! @{ | |
/** @brief Abstract base class for matching keypoint descriptors. | |
It has two groups of match methods: for matching descriptors of an image with another image or with | |
an image set. | |
*/ | |
class CV_EXPORTS_W DescriptorMatcher : public Algorithm | |
{ | |
public: | |
enum | |
{ | |
FLANNBASED = 1, | |
BRUTEFORCE = 2, | |
BRUTEFORCE_L1 = 3, | |
BRUTEFORCE_HAMMING = 4, | |
BRUTEFORCE_HAMMINGLUT = 5, | |
BRUTEFORCE_SL2 = 6 | |
}; | |
virtual ~DescriptorMatcher(); | |
/** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor | |
collection. | |
If the collection is not empty, the new descriptors are added to existing train descriptors. | |
@param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same | |
train image. | |
*/ | |
CV_WRAP virtual void add( InputArrayOfArrays descriptors ); | |
/** @brief Returns a constant link to the train descriptor collection trainDescCollection . | |
*/ | |
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const; | |
/** @brief Clears the train descriptor collections. | |
*/ | |
CV_WRAP virtual void clear() CV_OVERRIDE; | |
/** @brief Returns true if there are no train descriptors in the both collections. | |
*/ | |
CV_WRAP virtual bool empty() const CV_OVERRIDE; | |
/** @brief Returns true if the descriptor matcher supports masking permissible matches. | |
*/ | |
CV_WRAP virtual bool isMaskSupported() const = 0; | |
/** @brief Trains a descriptor matcher | |
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method | |
train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher) | |
have an empty implementation of this method. Other matchers really train their inner structures (for | |
example, FlannBasedMatcher trains flann::Index ). | |
*/ | |
CV_WRAP virtual void train(); | |
/** @brief Finds the best match for each descriptor from a query set. | |
@param queryDescriptors Query set of descriptors. | |
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors | |
collection stored in the class object. | |
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this | |
descriptor. So, matches size may be smaller than the query descriptors count. | |
@param mask Mask specifying permissible matches between an input query and train matrices of | |
descriptors. | |
In the first variant of this method, the train descriptors are passed as an input argument. In the | |
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is | |
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be | |
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if | |
mask.at\<uchar\>(i,j) is non-zero. | |
*/ | |
CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors, | |
CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const; | |
/** @brief Finds the k best matches for each descriptor from a query set. | |
@param queryDescriptors Query set of descriptors. | |
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors | |
collection stored in the class object. | |
@param mask Mask specifying permissible matches between an input query and train matrices of | |
descriptors. | |
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor. | |
@param k Count of best matches found per each query descriptor or less if a query descriptor has | |
less than k possible matches in total. | |
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is | |
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, | |
the matches vector does not contain matches for fully masked-out query descriptors. | |
These extended variants of DescriptorMatcher::match methods find several best matches for each query | |
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match | |
for the details about query and train descriptors. | |
*/ | |
CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, | |
CV_OUT std::vector<std::vector<DMatch> >& matches, int k, | |
InputArray mask=noArray(), bool compactResult=false ) const; | |
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance. | |
@param queryDescriptors Query set of descriptors. | |
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors | |
collection stored in the class object. | |
@param matches Found matches. | |
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is | |
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, | |
the matches vector does not contain matches for fully masked-out query descriptors. | |
@param maxDistance Threshold for the distance between matched descriptors. Distance means here | |
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured | |
in Pixels)! | |
@param mask Mask specifying permissible matches between an input query and train matrices of | |
descriptors. | |
For each query descriptor, the methods find such training descriptors that the distance between the | |
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are | |
returned in the distance increasing order. | |
*/ | |
CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, | |
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, | |
InputArray mask=noArray(), bool compactResult=false ) const; | |
/** @overload | |
@param queryDescriptors Query set of descriptors. | |
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this | |
descriptor. So, matches size may be smaller than the query descriptors count. | |
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query | |
descriptors and stored train descriptors from the i-th image trainDescCollection[i]. | |
*/ | |
CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches, | |
InputArrayOfArrays masks=noArray() ); | |
/** @overload | |
@param queryDescriptors Query set of descriptors. | |
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor. | |
@param k Count of best matches found per each query descriptor or less if a query descriptor has | |
less than k possible matches in total. | |
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query | |
descriptors and stored train descriptors from the i-th image trainDescCollection[i]. | |
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is | |
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, | |
the matches vector does not contain matches for fully masked-out query descriptors. | |
*/ | |
CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ); | |
/** @overload | |
@param queryDescriptors Query set of descriptors. | |
@param matches Found matches. | |
@param maxDistance Threshold for the distance between matched descriptors. Distance means here | |
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured | |
in Pixels)! | |
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query | |
descriptors and stored train descriptors from the i-th image trainDescCollection[i]. | |
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is | |
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, | |
the matches vector does not contain matches for fully masked-out query descriptors. | |
*/ | |
CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ); | |
CV_WRAP void write( const String& fileName ) const | |
{ | |
FileStorage fs(fileName, FileStorage::WRITE); | |
write(fs); | |
} | |
CV_WRAP void read( const String& fileName ) | |
{ | |
FileStorage fs(fileName, FileStorage::READ); | |
read(fs.root()); | |
} | |
// Reads matcher object from a file node | |
// see corresponding cv::Algorithm method | |
CV_WRAP virtual void read( const FileNode& ) CV_OVERRIDE; | |
// Writes matcher object to a file storage | |
virtual void write( FileStorage& ) const CV_OVERRIDE; | |
/** @brief Clones the matcher. | |
@param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object, | |
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an | |
object copy with the current parameters but with empty train data. | |
*/ | |
CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; | |
/** @brief Creates a descriptor matcher of a given type with the default parameters (using default | |
constructor). | |
@param descriptorMatcherType Descriptor matcher type. Now the following matcher types are | |
supported: | |
- `BruteForce` (it uses L2 ) | |
- `BruteForce-L1` | |
- `BruteForce-Hamming` | |
- `BruteForce-Hamming(2)` | |
- `FlannBased` | |
*/ | |
CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType ); | |
CV_WRAP static Ptr<DescriptorMatcher> create( int matcherType ); | |
// see corresponding cv::Algorithm method | |
CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); } | |
protected: | |
/** | |
* Class to work with descriptors from several images as with one merged matrix. | |
* It is used e.g. in FlannBasedMatcher. | |
*/ | |
class CV_EXPORTS DescriptorCollection | |
{ | |
public: | |
DescriptorCollection(); | |
DescriptorCollection( const DescriptorCollection& collection ); | |
virtual ~DescriptorCollection(); | |
// Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here. | |
void set( const std::vector<Mat>& descriptors ); | |
virtual void clear(); | |
const Mat& getDescriptors() const; | |
const Mat getDescriptor( int imgIdx, int localDescIdx ) const; | |
const Mat getDescriptor( int globalDescIdx ) const; | |
void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const; | |
int size() const; | |
protected: | |
Mat mergedDescriptors; | |
std::vector<int> startIdxs; | |
}; | |
//! In fact the matching is implemented only by the following two methods. These methods suppose | |
//! that the class object has been trained already. Public match methods call these methods | |
//! after calling train(). | |
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; | |
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; | |
static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx ); | |
static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx ); | |
static Mat clone_op( Mat m ) { return m.clone(); } | |
void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const; | |
//! Collection of descriptors from train images. | |
std::vector<Mat> trainDescCollection; | |
std::vector<UMat> utrainDescCollection; | |
}; | |
/** @brief Brute-force descriptor matcher. | |
For each descriptor in the first set, this matcher finds the closest descriptor in the second set | |
by trying each one. This descriptor matcher supports masking permissible matches of descriptor | |
sets. | |
*/ | |
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher | |
{ | |
public: | |
/** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create() | |
* | |
* | |
*/ | |
CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false ); | |
virtual ~BFMatcher() {} | |
virtual bool isMaskSupported() const CV_OVERRIDE { return true; } | |
/** @brief Brute-force matcher create method. | |
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are | |
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and | |
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor | |
description). | |
@param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k | |
nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with | |
k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the | |
matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent | |
pairs. Such technique usually produces best results with minimal number of outliers when there are | |
enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper. | |
*/ | |
CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ; | |
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE; | |
protected: | |
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE; | |
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE; | |
int normType; | |
bool crossCheck; | |
}; | |
/** @brief Flann-based descriptor matcher. | |
This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search | |
methods to find the best matches. So, this matcher may be faster when matching a large train | |
collection than the brute force matcher. FlannBasedMatcher does not support masking permissible | |
matches of descriptor sets because flann::Index does not support this. : | |
*/ | |
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher | |
{ | |
public: | |
CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(), | |
const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() ); | |
virtual void add( InputArrayOfArrays descriptors ) CV_OVERRIDE; | |
virtual void clear() CV_OVERRIDE; | |
// Reads matcher object from a file node | |
virtual void read( const FileNode& ) CV_OVERRIDE; | |
// Writes matcher object to a file storage | |
virtual void write( FileStorage& ) const CV_OVERRIDE; | |
virtual void train() CV_OVERRIDE; | |
virtual bool isMaskSupported() const CV_OVERRIDE; | |
CV_WRAP static Ptr<FlannBasedMatcher> create(); | |
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE; | |
protected: | |
static void convertToDMatches( const DescriptorCollection& descriptors, | |
const Mat& indices, const Mat& distances, | |
std::vector<std::vector<DMatch> >& matches ); | |
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE; | |
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, | |
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE; | |
Ptr<flann::IndexParams> indexParams; | |
Ptr<flann::SearchParams> searchParams; | |
Ptr<flann::Index> flannIndex; | |
DescriptorCollection mergedDescriptors; | |
int addedDescCount; | |
}; | |
//! @} features2d_match | |
/****************************************************************************************\ | |
* Drawing functions * | |
\****************************************************************************************/ | |
//! @addtogroup features2d_draw | |
//! @{ | |
struct CV_EXPORTS DrawMatchesFlags | |
{ | |
enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create), | |
//!< i.e. existing memory of output image may be reused. | |
//!< Two source image, matches and single keypoints will be drawn. | |
//!< For each keypoint only the center point will be drawn (without | |
//!< the circle around keypoint with keypoint size and orientation). | |
DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create). | |
//!< Matches will be drawn on existing content of output image. | |
NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn. | |
DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and | |
//!< orientation will be drawn. | |
}; | |
}; | |
/** @brief Draws keypoints. | |
@param image Source image. | |
@param keypoints Keypoints from the source image. | |
@param outImage Output image. Its content depends on the flags value defining what is drawn in the | |
output image. See possible flags bit values below. | |
@param color Color of keypoints. | |
@param flags Flags setting drawing features. Possible flags bit values are defined by | |
DrawMatchesFlags. See details above in drawMatches . | |
@note | |
For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT, | |
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG, | |
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS | |
*/ | |
CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage, | |
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); | |
/** @brief Draws the found matches of keypoints from two images. | |
@param img1 First source image. | |
@param keypoints1 Keypoints from the first source image. | |
@param img2 Second source image. | |
@param keypoints2 Keypoints from the second source image. | |
@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i] | |
has a corresponding point in keypoints2[matches[i]] . | |
@param outImg Output image. Its content depends on the flags value defining what is drawn in the | |
output image. See possible flags bit values below. | |
@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1) | |
, the color is generated randomly. | |
@param singlePointColor Color of single keypoints (circles), which means that keypoints do not | |
have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly. | |
@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are | |
drawn. | |
@param flags Flags setting drawing features. Possible flags bit values are defined by | |
DrawMatchesFlags. | |
This function draws matches of keypoints from two images in the output image. Match is a line | |
connecting two keypoints (circles). See cv::DrawMatchesFlags. | |
*/ | |
CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1, | |
InputArray img2, const std::vector<KeyPoint>& keypoints2, | |
const std::vector<DMatch>& matches1to2, InputOutputArray outImg, | |
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), | |
const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT ); | |
/** @overload */ | |
CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1, | |
InputArray img2, const std::vector<KeyPoint>& keypoints2, | |
const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg, | |
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), | |
const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ); | |
//! @} features2d_draw | |
/****************************************************************************************\ | |
* Functions to evaluate the feature detectors and [generic] descriptor extractors * | |
\****************************************************************************************/ | |
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2, | |
std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2, | |
float& repeatability, int& correspCount, | |
const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() ); | |
CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2, | |
const std::vector<std::vector<uchar> >& correctMatches1to2Mask, | |
std::vector<Point2f>& recallPrecisionCurve ); | |
CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision ); | |
CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision ); | |
/****************************************************************************************\ | |
* Bag of visual words * | |
\****************************************************************************************/ | |
//! @addtogroup features2d_category | |
//! @{ | |
/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors. | |
For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka, | |
Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. : | |
*/ | |
class CV_EXPORTS_W BOWTrainer | |
{ | |
public: | |
BOWTrainer(); | |
virtual ~BOWTrainer(); | |
/** @brief Adds descriptors to a training set. | |
@param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a | |
descriptor. | |
The training set is clustered using clustermethod to construct the vocabulary. | |
*/ | |
CV_WRAP void add( const Mat& descriptors ); | |
/** @brief Returns a training set of descriptors. | |
*/ | |
CV_WRAP const std::vector<Mat>& getDescriptors() const; | |
/** @brief Returns the count of all descriptors stored in the training set. | |
*/ | |
CV_WRAP int descriptorsCount() const; | |
CV_WRAP virtual void clear(); | |
/** @overload */ | |
CV_WRAP virtual Mat cluster() const = 0; | |
/** @brief Clusters train descriptors. | |
@param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor. | |
Descriptors are not added to the inner train descriptor set. | |
The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first | |
variant of the method, train descriptors stored in the object are clustered. In the second variant, | |
input descriptors are clustered. | |
*/ | |
CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0; | |
protected: | |
std::vector<Mat> descriptors; | |
int size; | |
}; | |
/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. : | |
*/ | |
class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer | |
{ | |
public: | |
/** @brief The constructor. | |
@see cv::kmeans | |
*/ | |
CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), | |
int attempts=3, int flags=KMEANS_PP_CENTERS ); | |
virtual ~BOWKMeansTrainer(); | |
// Returns trained vocabulary (i.e. cluster centers). | |
CV_WRAP virtual Mat cluster() const CV_OVERRIDE; | |
CV_WRAP virtual Mat cluster( const Mat& descriptors ) const CV_OVERRIDE; | |
protected: | |
int clusterCount; | |
TermCriteria termcrit; | |
int attempts; | |
int flags; | |
}; | |
/** @brief Class to compute an image descriptor using the *bag of visual words*. | |
Such a computation consists of the following steps: | |
1. Compute descriptors for a given image and its keypoints set. | |
2. Find the nearest visual words from the vocabulary for each keypoint descriptor. | |
3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words | |
encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the | |
vocabulary in the given image. | |
*/ | |
class CV_EXPORTS_W BOWImgDescriptorExtractor | |
{ | |
public: | |
/** @brief The constructor. | |
@param dextractor Descriptor extractor that is used to compute descriptors for an input image and | |
its keypoints. | |
@param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary | |
for each keypoint descriptor of the image. | |
*/ | |
CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, | |
const Ptr<DescriptorMatcher>& dmatcher ); | |
/** @overload */ | |
BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher ); | |
virtual ~BOWImgDescriptorExtractor(); | |
/** @brief Sets a visual vocabulary. | |
@param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the | |
vocabulary is a visual word (cluster center). | |
*/ | |
CV_WRAP void setVocabulary( const Mat& vocabulary ); | |
/** @brief Returns the set vocabulary. | |
*/ | |
CV_WRAP const Mat& getVocabulary() const; | |
/** @brief Computes an image descriptor using the set visual vocabulary. | |
@param image Image, for which the descriptor is computed. | |
@param keypoints Keypoints detected in the input image. | |
@param imgDescriptor Computed output image descriptor. | |
@param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that | |
pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) | |
returned if it is non-zero. | |
@param descriptors Descriptors of the image keypoints that are returned if they are non-zero. | |
*/ | |
void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor, | |
std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ); | |
/** @overload | |
@param keypointDescriptors Computed descriptors to match with vocabulary. | |
@param imgDescriptor Computed output image descriptor. | |
@param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that | |
pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) | |
returned if it is non-zero. | |
*/ | |
void compute( InputArray keypointDescriptors, OutputArray imgDescriptor, | |
std::vector<std::vector<int> >* pointIdxsOfClusters=0 ); | |
// compute() is not constant because DescriptorMatcher::match is not constant | |
CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor ) | |
{ compute(image,keypoints,imgDescriptor); } | |
/** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0. | |
*/ | |
CV_WRAP int descriptorSize() const; | |
/** @brief Returns an image descriptor type. | |
*/ | |
CV_WRAP int descriptorType() const; | |
protected: | |
Mat vocabulary; | |
Ptr<DescriptorExtractor> dextractor; | |
Ptr<DescriptorMatcher> dmatcher; | |
}; | |
//! @} features2d_category | |
//! @} features2d | |
} /* namespace cv */ | |