rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/3rdparty
/opencv
/opencv-linux-armhf
/include
/opencv2
/video
/background_segm.hpp
/*M/////////////////////////////////////////////////////////////////////////////////////// | |
// | |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
// | |
// By downloading, copying, installing or using the software you agree to this license. | |
// If you do not agree to this license, do not download, install, | |
// copy or use the software. | |
// | |
// | |
// License Agreement | |
// For Open Source Computer Vision Library | |
// | |
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | |
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. | |
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. | |
// Third party copyrights are property of their respective owners. | |
// | |
// Redistribution and use in source and binary forms, with or without modification, | |
// are permitted provided that the following conditions are met: | |
// | |
// * Redistribution's of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// | |
// * Redistribution's in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// | |
// * The name of the copyright holders may not be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// | |
// This software is provided by the copyright holders and contributors "as is" and | |
// any express or implied warranties, including, but not limited to, the implied | |
// warranties of merchantability and fitness for a particular purpose are disclaimed. | |
// In no event shall the Intel Corporation or contributors be liable for any direct, | |
// indirect, incidental, special, exemplary, or consequential damages | |
// (including, but not limited to, procurement of substitute goods or services; | |
// loss of use, data, or profits; or business interruption) however caused | |
// and on any theory of liability, whether in contract, strict liability, | |
// or tort (including negligence or otherwise) arising in any way out of | |
// the use of this software, even if advised of the possibility of such damage. | |
// | |
//M*/ | |
namespace cv | |
{ | |
//! @addtogroup video_motion | |
//! @{ | |
/** @brief Base class for background/foreground segmentation. : | |
The class is only used to define the common interface for the whole family of background/foreground | |
segmentation algorithms. | |
*/ | |
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm | |
{ | |
public: | |
/** @brief Computes a foreground mask. | |
@param image Next video frame. | |
@param fgmask The output foreground mask as an 8-bit binary image. | |
@param learningRate The value between 0 and 1 that indicates how fast the background model is | |
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning | |
rate. 0 means that the background model is not updated at all, 1 means that the background model | |
is completely reinitialized from the last frame. | |
*/ | |
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0; | |
/** @brief Computes a background image. | |
@param backgroundImage The output background image. | |
@note Sometimes the background image can be very blurry, as it contain the average background | |
statistics. | |
*/ | |
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0; | |
}; | |
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. | |
The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004 | |
and @cite Zivkovic2006 . | |
*/ | |
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor | |
{ | |
public: | |
/** @brief Returns the number of last frames that affect the background model | |
*/ | |
CV_WRAP virtual int getHistory() const = 0; | |
/** @brief Sets the number of last frames that affect the background model | |
*/ | |
CV_WRAP virtual void setHistory(int history) = 0; | |
/** @brief Returns the number of gaussian components in the background model | |
*/ | |
CV_WRAP virtual int getNMixtures() const = 0; | |
/** @brief Sets the number of gaussian components in the background model. | |
The model needs to be reinitalized to reserve memory. | |
*/ | |
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization! | |
/** @brief Returns the "background ratio" parameter of the algorithm | |
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's | |
considered background and added to the model as a center of a new component. It corresponds to TB | |
parameter in the paper. | |
*/ | |
CV_WRAP virtual double getBackgroundRatio() const = 0; | |
/** @brief Sets the "background ratio" parameter of the algorithm | |
*/ | |
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0; | |
/** @brief Returns the variance threshold for the pixel-model match | |
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by | |
the background model or not. Related to Cthr from the paper. | |
*/ | |
CV_WRAP virtual double getVarThreshold() const = 0; | |
/** @brief Sets the variance threshold for the pixel-model match | |
*/ | |
CV_WRAP virtual void setVarThreshold(double varThreshold) = 0; | |
/** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation | |
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the | |
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it | |
is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg | |
value generates more components. A higher Tg value may result in a small number of components but | |
they can grow too large. | |
*/ | |
CV_WRAP virtual double getVarThresholdGen() const = 0; | |
/** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation | |
*/ | |
CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0; | |
/** @brief Returns the initial variance of each gaussian component | |
*/ | |
CV_WRAP virtual double getVarInit() const = 0; | |
/** @brief Sets the initial variance of each gaussian component | |
*/ | |
CV_WRAP virtual void setVarInit(double varInit) = 0; | |
CV_WRAP virtual double getVarMin() const = 0; | |
CV_WRAP virtual void setVarMin(double varMin) = 0; | |
CV_WRAP virtual double getVarMax() const = 0; | |
CV_WRAP virtual void setVarMax(double varMax) = 0; | |
/** @brief Returns the complexity reduction threshold | |
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 | |
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the | |
standard Stauffer&Grimson algorithm. | |
*/ | |
CV_WRAP virtual double getComplexityReductionThreshold() const = 0; | |
/** @brief Sets the complexity reduction threshold | |
*/ | |
CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0; | |
/** @brief Returns the shadow detection flag | |
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for | |
details. | |
*/ | |
CV_WRAP virtual bool getDetectShadows() const = 0; | |
/** @brief Enables or disables shadow detection | |
*/ | |
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0; | |
/** @brief Returns the shadow value | |
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 | |
in the mask always means background, 255 means foreground. | |
*/ | |
CV_WRAP virtual int getShadowValue() const = 0; | |
/** @brief Sets the shadow value | |
*/ | |
CV_WRAP virtual void setShadowValue(int value) = 0; | |
/** @brief Returns the shadow threshold | |
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in | |
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel | |
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, | |
*Detecting Moving Shadows...*, IEEE PAMI,2003. | |
*/ | |
CV_WRAP virtual double getShadowThreshold() const = 0; | |
/** @brief Sets the shadow threshold | |
*/ | |
CV_WRAP virtual void setShadowThreshold(double threshold) = 0; | |
/** @brief Computes a foreground mask. | |
@param image Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$. | |
@param fgmask The output foreground mask as an 8-bit binary image. | |
@param learningRate The value between 0 and 1 that indicates how fast the background model is | |
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning | |
rate. 0 means that the background model is not updated at all, 1 means that the background model | |
is completely reinitialized from the last frame. | |
*/ | |
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE = 0; | |
}; | |
/** @brief Creates MOG2 Background Subtractor | |
@param history Length of the history. | |
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model | |
to decide whether a pixel is well described by the background model. This parameter does not | |
affect the background update. | |
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the | |
speed a bit, so if you do not need this feature, set the parameter to false. | |
*/ | |
CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2> | |
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16, | |
bool detectShadows=true); | |
/** @brief K-nearest neighbours - based Background/Foreground Segmentation Algorithm. | |
The class implements the K-nearest neighbours background subtraction described in @cite Zivkovic2006 . | |
Very efficient if number of foreground pixels is low. | |
*/ | |
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor | |
{ | |
public: | |
/** @brief Returns the number of last frames that affect the background model | |
*/ | |
CV_WRAP virtual int getHistory() const = 0; | |
/** @brief Sets the number of last frames that affect the background model | |
*/ | |
CV_WRAP virtual void setHistory(int history) = 0; | |
/** @brief Returns the number of data samples in the background model | |
*/ | |
CV_WRAP virtual int getNSamples() const = 0; | |
/** @brief Sets the number of data samples in the background model. | |
The model needs to be reinitalized to reserve memory. | |
*/ | |
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization! | |
/** @brief Returns the threshold on the squared distance between the pixel and the sample | |
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is | |
close to a data sample. | |
*/ | |
CV_WRAP virtual double getDist2Threshold() const = 0; | |
/** @brief Sets the threshold on the squared distance | |
*/ | |
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0; | |
/** @brief Returns the number of neighbours, the k in the kNN. | |
K is the number of samples that need to be within dist2Threshold in order to decide that that | |
pixel is matching the kNN background model. | |
*/ | |
CV_WRAP virtual int getkNNSamples() const = 0; | |
/** @brief Sets the k in the kNN. How many nearest neighbours need to match. | |
*/ | |
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0; | |
/** @brief Returns the shadow detection flag | |
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for | |
details. | |
*/ | |
CV_WRAP virtual bool getDetectShadows() const = 0; | |
/** @brief Enables or disables shadow detection | |
*/ | |
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0; | |
/** @brief Returns the shadow value | |
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 | |
in the mask always means background, 255 means foreground. | |
*/ | |
CV_WRAP virtual int getShadowValue() const = 0; | |
/** @brief Sets the shadow value | |
*/ | |
CV_WRAP virtual void setShadowValue(int value) = 0; | |
/** @brief Returns the shadow threshold | |
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in | |
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel | |
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, | |
*Detecting Moving Shadows...*, IEEE PAMI,2003. | |
*/ | |
CV_WRAP virtual double getShadowThreshold() const = 0; | |
/** @brief Sets the shadow threshold | |
*/ | |
CV_WRAP virtual void setShadowThreshold(double threshold) = 0; | |
}; | |
/** @brief Creates KNN Background Subtractor | |
@param history Length of the history. | |
@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide | |
whether a pixel is close to that sample. This parameter does not affect the background update. | |
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the | |
speed a bit, so if you do not need this feature, set the parameter to false. | |
*/ | |
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN> | |
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0, | |
bool detectShadows=true); | |
//! @} video_motion | |
} // cv | |