rknn-toolkit2-v2.1.0-2024-08-08
/
rknpu2
/examples
/librknn_api_android_demo
/rknn_create_mem_demo.cpp
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, | |
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
// See the License for the specific language governing permissions and | |
// limitations under the License. | |
/*------------------------------------------- | |
Includes | |
-------------------------------------------*/ | |
/*------------------------------------------- | |
Functions | |
-------------------------------------------*/ | |
static inline int64_t getCurrentTimeUs() | |
{ | |
struct timeval tv; | |
gettimeofday(&tv, NULL); | |
return tv.tv_sec * 1000000 + tv.tv_usec; | |
} | |
static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum) | |
{ | |
uint32_t i, j; | |
uint32_t top_count = outputCount > topNum ? topNum : outputCount; | |
for (i = 0; i < topNum; ++i) { | |
pfMaxProb[i] = -FLT_MAX; | |
pMaxClass[i] = -1; | |
} | |
for (j = 0; j < top_count; j++) { | |
for (i = 0; i < outputCount; i++) { | |
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) || | |
(i == *(pMaxClass + 4))) { | |
continue; | |
} | |
if (pfProb[i] > *(pfMaxProb + j)) { | |
*(pfMaxProb + j) = pfProb[i]; | |
*(pMaxClass + j) = i; | |
} | |
} | |
} | |
return 1; | |
} | |
static void dump_tensor_attr(rknn_tensor_attr* attr) | |
{ | |
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, " | |
"zp=%d, scale=%f\n", | |
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3], | |
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type), | |
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); | |
} | |
static unsigned char* load_image(const char* image_path, rknn_tensor_attr* input_attr) | |
{ | |
int req_height = 0; | |
int req_width = 0; | |
int req_channel = 0; | |
switch (input_attr->fmt) { | |
case RKNN_TENSOR_NHWC: | |
req_height = input_attr->dims[1]; | |
req_width = input_attr->dims[2]; | |
req_channel = input_attr->dims[3]; | |
break; | |
case RKNN_TENSOR_NCHW: | |
req_height = input_attr->dims[2]; | |
req_width = input_attr->dims[3]; | |
req_channel = input_attr->dims[1]; | |
break; | |
default: | |
printf("meet unsupported layout\n"); | |
return NULL; | |
} | |
int height = 0; | |
int width = 0; | |
int channel = 0; | |
unsigned char* image_data = stbi_load(image_path, &width, &height, &channel, req_channel); | |
if (image_data == NULL) { | |
printf("load image failed!\n"); | |
return NULL; | |
} | |
if (width != req_width || height != req_height) { | |
unsigned char* image_resized = (unsigned char*)STBI_MALLOC(req_width * req_height * req_channel); | |
if (!image_resized) { | |
printf("malloc image failed!\n"); | |
STBI_FREE(image_data); | |
return NULL; | |
} | |
if (stbir_resize_uint8(image_data, width, height, 0, image_resized, req_width, req_height, 0, channel) != 1) { | |
printf("resize image failed!\n"); | |
STBI_FREE(image_data); | |
return NULL; | |
} | |
STBI_FREE(image_data); | |
image_data = image_resized; | |
} | |
return image_data; | |
} | |
static unsigned char* load_model(const char* filename, int* model_size) | |
{ | |
FILE* fp = fopen(filename, "rb"); | |
if (fp == nullptr) { | |
printf("fopen %s fail!\n", filename); | |
return NULL; | |
} | |
fseek(fp, 0, SEEK_END); | |
int model_len = ftell(fp); | |
unsigned char* model = (unsigned char*)malloc(model_len); | |
fseek(fp, 0, SEEK_SET); | |
if (model_len != fread(model, 1, model_len, fp)) { | |
printf("fread %s fail!\n", filename); | |
free(model); | |
return NULL; | |
} | |
*model_size = model_len; | |
if (fp) { | |
fclose(fp); | |
} | |
return model; | |
} | |
/*------------------------------------------- | |
Main Functions | |
-------------------------------------------*/ | |
int main(int argc, char* argv[]) | |
{ | |
if (argc < 3) { | |
printf("Usage:%s model_path input_path [loop_count]\n", argv[0]); | |
return -1; | |
} | |
char* model_path = argv[1]; | |
char* input_path = argv[2]; | |
int loop_count = 1; | |
if (argc > 3) { | |
loop_count = atoi(argv[3]); | |
} | |
rknn_context ctx = 0; | |
// Load RKNN Model | |
int model_len = 0; | |
unsigned char* model = load_model(model_path, &model_len); | |
int ret = rknn_init(&ctx, model, model_len, 0, NULL); | |
if (ret < 0) { | |
printf("rknn_init fail! ret=%d\n", ret); | |
return -1; | |
} | |
// Get sdk and driver version | |
rknn_sdk_version sdk_ver; | |
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver)); | |
if (ret != RKNN_SUCC) { | |
printf("rknn_query fail! ret=%d\n", ret); | |
return -1; | |
} | |
printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version); | |
// Get Model Input Output Info | |
rknn_input_output_num io_num; | |
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); | |
if (ret != RKNN_SUCC) { | |
printf("rknn_query fail! ret=%d\n", ret); | |
return -1; | |
} | |
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); | |
printf("input tensors:\n"); | |
rknn_tensor_attr input_attrs[io_num.n_input]; | |
memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr)); | |
for (uint32_t i = 0; i < io_num.n_input; i++) { | |
input_attrs[i].index = i; | |
// query info | |
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); | |
if (ret < 0) { | |
printf("rknn_init error! ret=%d\n", ret); | |
return -1; | |
} | |
dump_tensor_attr(&input_attrs[i]); | |
} | |
printf("output tensors:\n"); | |
rknn_tensor_attr output_attrs[io_num.n_output]; | |
memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); | |
for (uint32_t i = 0; i < io_num.n_output; i++) { | |
output_attrs[i].index = i; | |
// query info | |
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); | |
if (ret != RKNN_SUCC) { | |
printf("rknn_query fail! ret=%d\n", ret); | |
return -1; | |
} | |
dump_tensor_attr(&output_attrs[i]); | |
} | |
// Get custom string | |
rknn_custom_string custom_string; | |
ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string)); | |
if (ret != RKNN_SUCC) { | |
printf("rknn_query fail! ret=%d\n", ret); | |
return -1; | |
} | |
printf("custom string: %s\n", custom_string.string); | |
unsigned char* input_data = NULL; | |
rknn_tensor_type input_type = RKNN_TENSOR_UINT8; | |
rknn_tensor_format input_layout = RKNN_TENSOR_NHWC; | |
// Load image | |
input_data = load_image(input_path, &input_attrs[0]); | |
if (!input_data) { | |
return -1; | |
} | |
// Create input tensor memory | |
rknn_tensor_mem* input_mems[1]; | |
// default input type is int8 (normalize and quantize need compute in outside) | |
// if set uint8, will fuse normalize and quantize to npu | |
input_attrs[0].type = input_type; | |
// default fmt is NHWC, npu only support NHWC in zero copy mode | |
input_attrs[0].fmt = input_layout; | |
input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride); | |
// Copy input data to input tensor memory | |
int width = input_attrs[0].dims[2]; | |
int stride = input_attrs[0].w_stride; | |
if (width == stride) { | |
memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]); | |
} else { | |
int height = input_attrs[0].dims[1]; | |
int channel = input_attrs[0].dims[3]; | |
// copy from src to dst with stride | |
uint8_t* src_ptr = input_data; | |
uint8_t* dst_ptr = (uint8_t*)input_mems[0]->virt_addr; | |
// width-channel elements | |
int src_wc_elems = width * channel; | |
int dst_wc_elems = stride * channel; | |
for (int h = 0; h < height; ++h) { | |
memcpy(dst_ptr, src_ptr, src_wc_elems); | |
src_ptr += src_wc_elems; | |
dst_ptr += dst_wc_elems; | |
} | |
} | |
// Create output tensor memory | |
rknn_tensor_mem* output_mems[io_num.n_output]; | |
for (uint32_t i = 0; i < io_num.n_output; ++i) { | |
// default output type is depend on model, this require float32 to compute top5 | |
// allocate float32 output tensor | |
int output_size = output_attrs[i].n_elems * sizeof(float); | |
output_mems[i] = rknn_create_mem(ctx, output_size); | |
} | |
// Set input tensor memory | |
ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]); | |
if (ret < 0) { | |
printf("rknn_set_io_mem fail! ret=%d\n", ret); | |
return -1; | |
} | |
// Set output tensor memory | |
for (uint32_t i = 0; i < io_num.n_output; ++i) { | |
// default output type is depend on model, this require float32 to compute top5 | |
output_attrs[i].type = RKNN_TENSOR_FLOAT32; | |
// set output memory and attribute | |
ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]); | |
if (ret < 0) { | |
printf("rknn_set_io_mem fail! ret=%d\n", ret); | |
return -1; | |
} | |
} | |
// Run | |
printf("Begin perf ...\n"); | |
for (int i = 0; i < loop_count; ++i) { | |
int64_t start_us = getCurrentTimeUs(); | |
ret = rknn_run(ctx, NULL); | |
int64_t elapse_us = getCurrentTimeUs() - start_us; | |
if (ret < 0) { | |
printf("rknn run error %d\n", ret); | |
return -1; | |
} | |
printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us); | |
} | |
// Get top 5 | |
uint32_t topNum = 5; | |
for (uint32_t i = 0; i < io_num.n_output; i++) { | |
uint32_t MaxClass[topNum]; | |
float fMaxProb[topNum]; | |
float* buffer = (float*)output_mems[i]->virt_addr; | |
uint32_t sz = output_attrs[i].n_elems; | |
int top_count = sz > topNum ? topNum : sz; | |
rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum); | |
printf("---- Top%d ----\n", top_count); | |
for (int j = 0; j < top_count; j++) { | |
printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]); | |
} | |
} | |
// Destroy rknn memory | |
rknn_destroy_mem(ctx, input_mems[0]); | |
for (uint32_t i = 0; i < io_num.n_output; ++i) { | |
rknn_destroy_mem(ctx, output_mems[i]); | |
} | |
// destroy | |
rknn_destroy(ctx); | |
if (input_data != nullptr) { | |
free(input_data); | |
} | |
if (model != nullptr) { | |
free(model); | |
} | |
return 0; | |
} | |