csukuangfj
first commit
477da44
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*-------------------------------------------
Includes
-------------------------------------------*/
#include "opencv2/core/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "rknn_api.h"
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
using namespace std;
using namespace cv;
/*-------------------------------------------
Functions
-------------------------------------------*/
static inline int64_t getCurrentTimeUs()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
{
uint32_t i, j;
uint32_t top_count = outputCount > topNum ? topNum : outputCount;
for (i = 0; i < topNum; ++i) {
pfMaxProb[i] = -FLT_MAX;
pMaxClass[i] = -1;
}
for (j = 0; j < top_count; j++) {
for (i = 0; i < outputCount; i++) {
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
(i == *(pMaxClass + 4))) {
continue;
}
if (pfProb[i] > *(pfMaxProb + j)) {
*(pfMaxProb + j) = pfProb[i];
*(pMaxClass + j) = i;
}
}
}
return 1;
}
static void dump_tensor_attr(rknn_tensor_attr* attr)
{
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
/*-------------------------------------------
Main Functions
-------------------------------------------*/
int main(int argc, char* argv[])
{
if (argc < 3) {
printf("Usage:%s model_path input_path [loop_count]\n", argv[0]);
return -1;
}
char* model_path = argv[1];
char* input_path = argv[2];
int loop_count = 1;
if (argc > 3) {
loop_count = atoi(argv[3]);
}
rknn_context ctx = 0;
// Load RKNN Model
int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
if (ret < 0) {
printf("rknn_init fail! ret=%d\n", ret);
return -1;
}
// Get sdk and driver version
rknn_sdk_version sdk_ver;
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
// Get Model Input Output Info
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
printf("input tensors:\n");
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
for (uint32_t i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
// query info
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
if (ret < 0) {
printf("rknn_init error! ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&input_attrs[i]);
}
printf("output tensors:\n");
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
for (uint32_t i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
// query info
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&output_attrs[i]);
}
// Get custom string
rknn_custom_string custom_string;
ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("custom string: %s\n", custom_string.string);
unsigned char* input_data = NULL;
rknn_tensor_type input_type = RKNN_TENSOR_UINT8;
rknn_tensor_format input_layout = RKNN_TENSOR_NHWC;
// Load image
int req_height = 0;
int req_width = 0;
int req_channel = 0;
switch (input_attrs[0].fmt) {
case RKNN_TENSOR_NHWC:
req_height = input_attrs[0].dims[1];
req_width = input_attrs[0].dims[2];
req_channel = input_attrs[0].dims[3];
break;
case RKNN_TENSOR_NCHW:
req_height = input_attrs[0].dims[2];
req_width = input_attrs[0].dims[3];
req_channel = input_attrs[0].dims[1];
break;
default:
printf("meet unsupported layout\n");
return -1;
}
int height = 0;
int width = 0;
int channel = 0;
cv::Mat orig_img = imread(input_path, cv::IMREAD_COLOR);
if (!orig_img.data) {
printf("cv::imread %s fail!\n", input_path);
return -1;
}
// if origin model is from Caffe, you maybe not need do BGR2RGB.
cv::Mat orig_img_rgb;
cv::cvtColor(orig_img, orig_img_rgb, cv::COLOR_BGR2RGB);
cv::Mat img = orig_img_rgb.clone();
if (orig_img.cols != req_width || orig_img.rows != req_height) {
printf("resize %d %d to %d %d\n", orig_img.cols, orig_img.rows, req_width, req_height);
cv::resize(orig_img_rgb, img, cv::Size(req_width, req_height), 0, 0, cv::INTER_LINEAR);
}
input_data = img.data;
if (!input_data) {
return -1;
}
// Create input tensor memory
rknn_tensor_mem* input_mems[1];
// default input type is int8 (normalize and quantize need compute in outside)
// if set uint8, will fuse normalize and quantize to npu
input_attrs[0].type = input_type;
// default fmt is NHWC, npu only support NHWC in zero copy mode
input_attrs[0].fmt = input_layout;
input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride);
// Copy input data to input tensor memory
width = input_attrs[0].dims[2];
int stride = input_attrs[0].w_stride;
if (width == stride) {
memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]);
} else {
int height = input_attrs[0].dims[1];
int channel = input_attrs[0].dims[3];
// copy from src to dst with stride
uint8_t* src_ptr = input_data;
uint8_t* dst_ptr = (uint8_t*)input_mems[0]->virt_addr;
// width-channel elements
int src_wc_elems = width * channel;
int dst_wc_elems = stride * channel;
for (int h = 0; h < height; ++h) {
memcpy(dst_ptr, src_ptr, src_wc_elems);
src_ptr += src_wc_elems;
dst_ptr += dst_wc_elems;
}
}
// Create output tensor memory
rknn_tensor_mem* output_mems[io_num.n_output];
for (uint32_t i = 0; i < io_num.n_output; ++i) {
// default output type is depend on model, this require float32 to compute top5
// allocate float32 output tensor
int output_size = output_attrs[i].n_elems * sizeof(float);
output_mems[i] = rknn_create_mem(ctx, output_size);
}
// Set input tensor memory
ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]);
if (ret < 0) {
printf("rknn_set_io_mem fail! ret=%d\n", ret);
return -1;
}
// Set output tensor memory
for (uint32_t i = 0; i < io_num.n_output; ++i) {
// default output type is depend on model, this require float32 to compute top5
output_attrs[i].type = RKNN_TENSOR_FLOAT32;
// set output memory and attribute
ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]);
if (ret < 0) {
printf("rknn_set_io_mem fail! ret=%d\n", ret);
return -1;
}
}
// Run
printf("Begin perf ...\n");
for (int i = 0; i < loop_count; ++i) {
int64_t start_us = getCurrentTimeUs();
ret = rknn_run(ctx, NULL);
int64_t elapse_us = getCurrentTimeUs() - start_us;
if (ret < 0) {
printf("rknn run error %d\n", ret);
return -1;
}
printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
}
// Get top 5
uint32_t topNum = 5;
for (uint32_t i = 0; i < io_num.n_output; i++) {
uint32_t MaxClass[topNum];
float fMaxProb[topNum];
float* buffer = (float*)output_mems[i]->virt_addr;
uint32_t sz = output_attrs[i].n_elems;
int top_count = sz > topNum ? topNum : sz;
rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
printf("---- Top%d ----\n", top_count);
for (int j = 0; j < top_count; j++) {
printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
}
}
// Destroy rknn memory
rknn_destroy_mem(ctx, input_mems[0]);
for (uint32_t i = 0; i < io_num.n_output; ++i) {
rknn_destroy_mem(ctx, output_mems[i]);
}
// destroy
rknn_destroy(ctx);
return 0;
}