import cv2 import numpy as np import platform from synset_label import labels from rknnlite.api import RKNNLite # decice tree for RK356x/RK3576/RK3588 DEVICE_COMPATIBLE_NODE = '/proc/device-tree/compatible' def get_host(): # get platform and device type system = platform.system() machine = platform.machine() os_machine = system + '-' + machine if os_machine == 'Linux-aarch64': try: with open(DEVICE_COMPATIBLE_NODE) as f: device_compatible_str = f.read() if 'rk3562' in device_compatible_str: host = 'RK3562' elif 'rk3576' in device_compatible_str: host = 'RK3576' elif 'rk3588' in device_compatible_str: host = 'RK3588' else: host = 'RK3566_RK3568' except IOError: print('Read device node {} failed.'.format(DEVICE_COMPATIBLE_NODE)) exit(-1) else: host = os_machine return host INPUT_SIZE = 224 RK3566_RK3568_RKNN_MODEL = 'resnet18_for_rk3566_rk3568.rknn' RK3588_RKNN_MODEL = 'resnet18_for_rk3588.rknn' RK3562_RKNN_MODEL = 'resnet18_for_rk3562.rknn' RK3576_RKNN_MODEL = 'resnet18_for_rk3576.rknn' def show_top5(result): output = result[0].reshape(-1) # Softmax output = np.exp(output) / np.sum(np.exp(output)) # Get the indices of the top 5 largest values output_sorted_indices = np.argsort(output)[::-1][:5] top5_str = 'resnet18\n-----TOP 5-----\n' for i, index in enumerate(output_sorted_indices): value = output[index] if value > 0: topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index, value, labels[index]) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) if __name__ == '__main__': # Get device information host_name = get_host() if host_name == 'RK3566_RK3568': rknn_model = RK3566_RK3568_RKNN_MODEL elif host_name == 'RK3562': rknn_model = RK3562_RKNN_MODEL elif host_name == 'RK3576': rknn_model = RK3576_RKNN_MODEL elif host_name == 'RK3588': rknn_model = RK3588_RKNN_MODEL else: print("This demo cannot run on the current platform: {}".format(host_name)) exit(-1) rknn_lite = RKNNLite() # Load RKNN model print('--> Load RKNN model') ret = rknn_lite.load_rknn(rknn_model) if ret != 0: print('Load RKNN model failed') exit(ret) print('done') ori_img = cv2.imread('./space_shuttle_224.jpg') img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB) img = np.expand_dims(img, 0) # Init runtime environment print('--> Init runtime environment') # Run on RK356x / RK3576 / RK3588 with Debian OS, do not need specify target. if host_name in ['RK3576', 'RK3588']: # For RK3576 / RK3588, specify which NPU core the model runs on through the core_mask parameter. ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0) else: ret = rknn_lite.init_runtime() if ret != 0: print('Init runtime environment failed') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn_lite.inference(inputs=[img]) # Show the classification results show_top5(outputs) print('done') rknn_lite.release()