# How to use hybrid-quantization function ## Model Source The model used in this example come from: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md ssd_mobilenet_v2_coco ## Script Usage *Usage:* ``` 1. python step1.py 2. modify ssd_mobilenet_v2.quantization.cfg according to the prompt of step1.py 3. python step2.py ``` *Description:* - The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. - If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. ## Expected Results This example will outputs the results of the accuracy analysis and save the result of object detection to the 'result.jpg', as follows: ``` layer_name simulator_error entire single cos euc cos euc ----------------------------------------------------------------------------------------------------------------------------------------------------- [Input] FeatureExtractor/MobilenetV2/MobilenetV2/input:0 1.00000 | 0.0 1.00000 | 0.0 [exDataConvert] FeatureExtractor/MobilenetV2/MobilenetV2/input:0_int8 0.99996 | 2.0377 0.99996 | 2.0377 [Conv] Conv__350:0 [Clip] FeatureExtractor/MobilenetV2/Conv/Relu6:0 0.99998 | 9.5952 0.99998 | 9.5952 [Conv] FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/batchnorm/add_1:0 [Clip] FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6:0 0.99951 | 65.269 0.99957 | 61.673 .... [Concat] concat:0_before_conv 0.99817 | 9.3381 1.00000 | 0.0317 [exDataConvert] concat:0_before_conv__int8 0.99812 | 9.4634 0.99994 | 1.6116 [Conv] concat:0_int8 0.99812 | 9.4634 0.99994 | 1.6115 [exDataConvert] concat:0 0.99812 | 9.4634 0.99994 | 1.6115 ``` ![result](result_truth.jpg) - Note: Different platforms, different versions of tools and drivers may have slightly different results.