# ONNX ResNet50 V2 ## Model Source The model used in this example come from: https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx ## Script Usage *Usage:* ``` python test.py ``` *rknn_convert usage:* ``` python3 -m rknn.api.rknn_convert -t rk3568 -i ./model_config.yml -o ./ ``` *Description:* - The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. - If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. ## Expected Results This example will print the TOP5 labels and corresponding scores of the test image classification results, as follows: ``` -----TOP 5----- [155] score:0.742885 class:"Shih-Tzu" [154] score:0.225878 class:"Pekinese, Pekingese, Peke" [262] score:0.015507 class:"Brabancon griffon" [152] score:0.003501 class:"Japanese spaniel" [254] score:0.002801 class:"pug, pug-dog" ``` - Note: Different platforms, different versions of tools and drivers may have slightly different results.