// Copyright (c) 2022 by Rockchip Electronics Co., Ltd. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*------------------------------------------- Includes -------------------------------------------*/ #include "rknn_api.h" #include #include #include #include #include #define STB_IMAGE_IMPLEMENTATION #include "stb/stb_image.h" #define STB_IMAGE_RESIZE_IMPLEMENTATION #include #include "cnpy/cnpy.h" using namespace cnpy; /*------------------------------------------- Functions -------------------------------------------*/ static inline int64_t getCurrentTimeUs() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000 + tv.tv_usec; } static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum) { uint32_t i, j; uint32_t top_count = outputCount > topNum ? topNum : outputCount; for (i = 0; i < topNum; ++i) { pfMaxProb[i] = -FLT_MAX; pMaxClass[i] = -1; } for (j = 0; j < top_count; j++) { for (i = 0; i < outputCount; i++) { if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) || (i == *(pMaxClass + 4))) { continue; } if (pfProb[i] > *(pfMaxProb + j)) { *(pfMaxProb + j) = pfProb[i]; *(pMaxClass + j) = i; } } } return 1; } static void dump_tensor_attr(rknn_tensor_attr* attr) { std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]); for (int i = 1; i < attr->n_dims; ++i) { shape_str += ", " + std::to_string(attr->dims[i]); } printf(" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, w_stride = %d, size_with_stride=%d, fmt=%s, " "type=%s, qnt_type=%s, " "zp=%d, scale=%f\n", attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems, attr->size, attr->w_stride, attr->size_with_stride, get_format_string(attr->fmt), get_type_string(attr->type), get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); } static unsigned char* load_npy(const char* input_path, rknn_tensor_attr* input_attr, int* input_type, int* input_size) { int req_height = 0; int req_width = 0; int req_channel = 0; printf("Loading %s\n", input_path); switch (input_attr->fmt) { case RKNN_TENSOR_NHWC: req_height = input_attr->dims[1]; req_width = input_attr->dims[2]; req_channel = input_attr->dims[3]; break; case RKNN_TENSOR_NCHW: req_height = input_attr->dims[2]; req_width = input_attr->dims[3]; req_channel = input_attr->dims[1]; break; case RKNN_TENSOR_UNDEFINED: break; default: printf("meet unsupported layout\n"); return NULL; } NpyArray npy_data = npy_load(input_path); int type_bytes = npy_data.word_size; std::string typeName = npy_data.typeName; printf("npy data type:%s\n", typeName.c_str()); if (typeName == "int8") { *input_type = RKNN_TENSOR_INT8; } else if (typeName == "uint8") { *input_type = RKNN_TENSOR_UINT8; } else if (typeName == "float16") { *input_type = RKNN_TENSOR_FLOAT16; } else if (typeName == "float32") { *input_type = RKNN_TENSOR_FLOAT32; } else if (typeName == "8") { *input_type = RKNN_TENSOR_BOOL; } else if (typeName == "int64") { *input_type = RKNN_TENSOR_INT64; } // npy shape = NHWC int npy_shape[4] = {1, 1, 1, 1}; int start = npy_data.shape.size() == 4 ? 0 : 1; for (size_t i = 0; i < npy_data.shape.size() && i < 4; ++i) { npy_shape[start + i] = npy_data.shape[i]; } int height = npy_shape[1]; int width = npy_shape[2]; int channel = npy_shape[3]; if ((input_attr->fmt != RKNN_TENSOR_UNDEFINED) && (width != req_width || height != req_height || channel != req_channel)) { printf("npy shape match failed!, (%d, %d, %d) != (%d, %d, %d)\n", height, width, channel, req_height, req_width, req_channel); return NULL; } unsigned char* data = (unsigned char*)malloc(npy_data.num_bytes()); if (!data) { return NULL; } // TODO: copy memcpy(data, npy_data.data(), npy_data.num_bytes()); *input_size = npy_data.num_bytes(); return data; } static void save_npy(const char* output_path, float* output_data, rknn_tensor_attr* output_attr) { std::vector output_shape; for (uint32_t i = 0; i < output_attr->n_dims; ++i) { output_shape.push_back(output_attr->dims[i]); } npy_save(output_path, output_data, output_shape); } static unsigned char* load_image(const char* image_path, rknn_tensor_attr* input_attr) { int req_height = 0; int req_width = 0; int req_channel = 0; switch (input_attr->fmt) { case RKNN_TENSOR_NHWC: req_height = input_attr->dims[1]; req_width = input_attr->dims[2]; req_channel = input_attr->dims[3]; break; case RKNN_TENSOR_NCHW: req_height = input_attr->dims[2]; req_width = input_attr->dims[3]; req_channel = input_attr->dims[1]; break; default: printf("meet unsupported layout\n"); return NULL; } int height = 0; int width = 0; int channel = 0; unsigned char* image_data = stbi_load(image_path, &width, &height, &channel, req_channel); if (image_data == NULL) { printf("load image failed!\n"); return NULL; } if (width != req_width || height != req_height) { unsigned char* image_resized = (unsigned char*)STBI_MALLOC(req_width * req_height * req_channel); if (!image_resized) { printf("malloc image failed!\n"); STBI_FREE(image_data); return NULL; } if (stbir_resize_uint8(image_data, width, height, 0, image_resized, req_width, req_height, 0, channel) != 1) { printf("resize image failed!\n"); STBI_FREE(image_data); return NULL; } STBI_FREE(image_data); image_data = image_resized; } return image_data; } static std::vector split(const std::string& str, const std::string& pattern) { std::vector res; if (str == "") return res; std::string strs = str + pattern; size_t pos = strs.find(pattern); while (pos != strs.npos) { std::string temp = strs.substr(0, pos); res.push_back(temp); strs = strs.substr(pos + 1, strs.size()); pos = strs.find(pattern); } return res; } /*------------------------------------------- Main Functions -------------------------------------------*/ int main(int argc, char* argv[]) { if (argc < 2) { printf("Usage:%s model_path [input_path] [loop_count] [core_mask]\n", argv[0]); return -1; } char* model_path = argv[1]; std::vector input_paths_split; int loop_count = 10; uint32_t core_mask = 1; rknn_context ctx = 0; uint32_t topNum = 5; double total_time = 0; if (argc > 2) { char* input_paths = argv[2]; input_paths_split = split(input_paths, "#"); } if (argc > 3) { loop_count = atoi(argv[3]); } if (argc > 4) { core_mask = strtoul(argv[4], NULL, 10); } // Init rknn from model path int ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("rknn_init fail! ret=%d\n", ret); return -1; } // Get sdk and driver version rknn_sdk_version sdk_ver; ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); rknn_destroy(ctx); return -1; } printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version); // Get weight and internal mem size, dma used size rknn_mem_size mem_size; ret = rknn_query(ctx, RKNN_QUERY_MEM_SIZE, &mem_size, sizeof(mem_size)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); rknn_destroy(ctx); return -1; } printf("total weight size: %d, total internal size: %d\n", mem_size.total_weight_size, mem_size.total_internal_size); printf("total dma used size: %zu\n", (size_t)mem_size.total_dma_allocated_size); // Get Model Input Output Info rknn_input_output_num io_num; ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); rknn_destroy(ctx); return -1; } printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); printf("input tensors:\n"); rknn_tensor_attr input_attrs[io_num.n_input]; memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { printf("rknn_init error! ret=%d\n", ret); rknn_destroy(ctx); return -1; } dump_tensor_attr(&input_attrs[i]); } printf("output tensors:\n"); rknn_tensor_attr output_attrs[io_num.n_output]; memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); rknn_destroy(ctx); return -1; } dump_tensor_attr(&output_attrs[i]); } // Get custom string rknn_custom_string custom_string; ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); rknn_destroy(ctx); return -1; } printf("custom string: %s\n", custom_string.string); unsigned char* input_data[io_num.n_input]; int input_type[io_num.n_input]; int input_layout[io_num.n_input]; int input_size[io_num.n_input]; rknn_input inputs[io_num.n_input]; rknn_output outputs[io_num.n_output]; for (int i = 0; i < io_num.n_input; i++) { input_data[i] = NULL; input_type[i] = RKNN_TENSOR_UINT8; input_layout[i] = RKNN_TENSOR_NHWC; input_size[i] = input_attrs[i].n_elems * sizeof(uint8_t); } if (input_paths_split.size() > 0) { // Load input if (io_num.n_input != input_paths_split.size()) { printf("input missing!, need input number: %d, only get %zu inputs\n", io_num.n_input, input_paths_split.size()); goto out; } for (int i = 0; i < io_num.n_input; i++) { if (strstr(input_paths_split[i].c_str(), ".npy")) { input_data[i] = load_npy(input_paths_split[i].c_str(), &input_attrs[i], &input_type[i], &input_size[i]); } else { // Load image input_data[i] = load_image(input_paths_split[i].c_str(), &input_attrs[i]); } if (!input_data[i]) { goto out; } } } else { for (int i = 0; i < io_num.n_input; i++) { input_data[i] = (unsigned char*)malloc(input_size[i]); memset(input_data[i], 0x00, input_size[i]); } } memset(inputs, 0, io_num.n_input * sizeof(rknn_input)); for (int i = 0; i < io_num.n_input; i++) { inputs[i].index = i; inputs[i].pass_through = 0; inputs[i].type = (rknn_tensor_type)input_type[i]; inputs[i].fmt = (rknn_tensor_format)input_layout[i]; inputs[i].buf = input_data[i]; inputs[i].size = input_size[i]; } // Set input ret = rknn_inputs_set(ctx, io_num.n_input, inputs); if (ret < 0) { printf("rknn_input_set fail! ret=%d\n", ret); goto out; } rknn_set_core_mask(ctx, (rknn_core_mask)core_mask); // Warmup printf("Warmup ...\n"); for (int i = 0; i < 5; ++i) { int64_t start_us = getCurrentTimeUs(); ret = rknn_run(ctx, NULL); int64_t elapse_us = getCurrentTimeUs() - start_us; if (ret < 0) { printf("rknn run error %d\n", ret); goto out; } printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us); } // Run printf("Begin perf ...\n"); for (int i = 0; i < loop_count; ++i) { int64_t start_us = getCurrentTimeUs(); ret = rknn_run(ctx, NULL); int64_t elapse_us = getCurrentTimeUs() - start_us; if (ret < 0) { printf("rknn run error %d\n", ret); return -1; } total_time += elapse_us / 1000.f; printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us); } printf("\nAvg Time %.2fms, Avg FPS = %.3f\n\n", total_time/loop_count, loop_count * 1000.f / total_time); // Get output memset(outputs, 0, io_num.n_output * sizeof(rknn_output)); for (uint32_t i = 0; i < io_num.n_output; ++i) { outputs[i].want_float = 1; outputs[i].index = i; outputs[i].is_prealloc = 0; } ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); if (ret < 0) { printf("rknn_outputs_get fail! ret=%d\n", ret); goto out; } // save output for (uint32_t i = 0; i < io_num.n_output; i++) { char output_path[PATH_MAX]; memset(output_path, 0x00, sizeof(output_path)); sprintf(output_path, "rt_output%d.npy", i); printf("Save output to %s\n", output_path); save_npy(output_path, (float*)outputs[i].buf, &output_attrs[i]); } // Get top 5 for (uint32_t i = 0; i < io_num.n_output; i++) { uint32_t MaxClass[topNum]; float fMaxProb[topNum]; float* buffer = (float*)outputs[i].buf; uint32_t sz = outputs[i].size / sizeof(float); int top_count = sz > topNum ? topNum : sz; rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum); printf("---- Top%d ----\n", top_count); for (int j = 0; j < top_count; j++) { printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]); } } // release outputs ret = rknn_outputs_release(ctx, io_num.n_output, outputs); out: // destroy rknn_destroy(ctx); for (int i = 0; i < io_num.n_input; i++) { if (input_data[i] != NULL) { free(input_data[i]); } } return 0; }