/**************************************************************************** * * Copyright (c) 2017 - 2018 by Rockchip Corp. All rights reserved. * * The material in this file is confidential and contains trade secrets * of Rockchip Corporation. This is proprietary information owned by * Rockchip Corporation. No part of this work may be disclosed, * reproduced, copied, transmitted, or used in any way for any purpose, * without the express written permission of Rockchip Corporation. * *****************************************************************************/ #ifndef _RKNN_MATMUL_API_H #define _RKNN_MATMUL_API_H #ifdef __cplusplus extern "C" { #endif #include "rknn_api.h" typedef rknn_context rknn_matmul_ctx; typedef enum _rknn_matmul_quant_type { RKNN_QUANT_TYPE_PER_LAYER_SYM = 0, RKNN_QUANT_TYPE_PER_LAYER_ASYM = 1, RKNN_QUANT_TYPE_PER_CHANNEL_SYM = 2, RKNN_QUANT_TYPE_PER_CHANNEL_ASYM = 3, RKNN_QUANT_TYPE_PER_GROUP_SYM = 4, RKNN_QUANT_TYPE_PER_GROUP_ASYM = 5, } rknn_matmul_quant_type; typedef struct _rknn_quant_params { char name[RKNN_MAX_NAME_LEN]; // matmul tensor scale float* scale; int32_t scale_len; // matmul tensor zero point int32_t* zp; int32_t zp_len; } rknn_quant_params; typedef enum _rknn_matmul_type { RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32 = 1, RKNN_INT8_MM_INT8_TO_INT32 = 2, RKNN_INT8_MM_INT8_TO_INT8 = 3, RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16 = 4, RKNN_FLOAT16_MM_INT8_TO_FLOAT32 = 5, RKNN_FLOAT16_MM_INT8_TO_FLOAT16 = 6, RKNN_FLOAT16_MM_INT4_TO_FLOAT32 = 7, RKNN_FLOAT16_MM_INT4_TO_FLOAT16 = 8, RKNN_INT8_MM_INT8_TO_FLOAT32 = 9, RKNN_INT4_MM_INT4_TO_INT16 = 10, RKNN_INT8_MM_INT4_TO_INT32 = 11, } rknn_matmul_type; inline static const char* get_matmul_type_string(rknn_matmul_type type) { switch (type) { case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32: return "RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32"; case RKNN_INT8_MM_INT8_TO_INT32: return "RKNN_INT8_MM_INT8_TO_INT32"; case RKNN_INT8_MM_INT8_TO_INT8: return "RKNN_INT8_MM_INT8_TO_INT8"; case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16: return "RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16"; case RKNN_FLOAT16_MM_INT8_TO_FLOAT32: return "RKNN_FLOAT16_MM_INT8_TO_FLOAT32"; case RKNN_FLOAT16_MM_INT8_TO_FLOAT16: return "RKNN_FLOAT16_MM_INT8_TO_FLOAT16"; case RKNN_INT4_MM_INT4_TO_INT16: return "RKNN_INT4_MM_INT4_TO_INT16"; case RKNN_FLOAT16_MM_INT4_TO_FLOAT32: return "RKNN_FLOAT16_MM_INT4_TO_FLOAT32"; case RKNN_FLOAT16_MM_INT4_TO_FLOAT16: return "RKNN_FLOAT16_MM_INT4_TO_FLOAT16"; case RKNN_INT8_MM_INT4_TO_INT32: return "RKNN_INT8_MM_INT4_TO_INT32"; case RKNN_INT8_MM_INT8_TO_FLOAT32: return "RKNN_INT8_MM_INT8_TO_FLOAT32"; default: return "UNKNOW"; } } typedef struct _rknn_matmul_tensor_attr { char name[RKNN_MAX_NAME_LEN]; // indicate A(M, K) or B(K, N) or C(M, N) uint32_t n_dims; uint32_t dims[RKNN_MAX_DIMS]; // matmul tensor size uint32_t size; // matmul tensor data type // int8 : A, B // int32: C rknn_tensor_type type; } rknn_matmul_tensor_attr; typedef struct _rknn_matmul_io_attr { // indicate A(M, K) or B(K, N) or C(M, N) rknn_matmul_tensor_attr A; rknn_matmul_tensor_attr B; rknn_matmul_tensor_attr C; } rknn_matmul_io_attr; /* matmul dynamic shape struct */ typedef struct _rknn_matmul_shape { int32_t M; int32_t K; int32_t N; } rknn_matmul_shape; /* the layout of matmul input/output tensor. */ typedef enum { RKNN_MM_LAYOUT_NORM = 0, RKNN_MM_LAYOUT_NATIVE = 1, RKNN_MM_LAYOUT_TP_NORM = 2, } rknn_matmul_layout; /* matmul information struct */ typedef struct rknn_matmul_info_t { int32_t M; int32_t K; // limit: RK3566/3568: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte; // RK3562: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte; // RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte, // int4 type must be aligned with 32byte; int32_t N; // limit: RK3566/3568: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte; // RK3562: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte; // RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte, // int4 type must be aligned with 64byte; // matmul data type // int4: int4(A) x int4(B) -> int16(C) // int8: int8(A) x int8(B) -> int32(C) // float16: float16(A) x float16(B) -> float32(C) rknn_matmul_type type; // matmul native layout for B // 0: normal layout // 1: native layout int16_t B_layout; // matmul quant type for B // A and C only support per layer // 0: per layer // 1: per channel // 2: per group int16_t B_quant_type; // matmul native layout for A and C // 0: normal layout // 1: native layout int16_t AC_layout; // matmul quant type for A and C, only support 0 int16_t AC_quant_type; // iommu domain id, each domain has 4GB of space int32_t iommu_domain_id; // B_quant_type set 2, group size is enable int16_t group_size; // reserved field int8_t reserved[34]; } rknn_matmul_info; /* rknn_matmul_create params: rknn_matmul_ctx *ctx the handle of context. rknn_matmul_info *info the matmal information. rknn_matmul_io_attr *io_attr inputs/output attribute return: int error code */ int rknn_matmul_create(rknn_matmul_ctx* ctx, rknn_matmul_info* info, rknn_matmul_io_attr* io_attr); /* rknn_matmul_create_dynamic_shape params: rknn_matmul_ctx *ctx the handle of context. rknn_matmul_info *info the matmal information. int shape_num the supported shape number of matmul. rknn_matmul_shape dynamic_shapes[] the supported M,K,N shape struct array. rknn_matmul_io_attr *io_attr the array of inputs and output attribute return: int error code */ /* 原来的info.M, K, N无效 */ int rknn_matmul_create_dynamic_shape(rknn_matmul_ctx* ctx, rknn_matmul_info* info, int shape_num, rknn_matmul_shape dynamic_shapes[], rknn_matmul_io_attr io_attrs[]); /* rknn_matmul_set_io_mem params: rknn_matmul_ctx ctx the handle of context. rknn_tensor_mem *mem the pointer of tensor memory information. rknn_matmul_tensor_attr *attr the attribute of input or output tensor buffer. return: int error code. formula: C = A * B, limit: K max: k <= 10240 K limit: RK3566/3568: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte; RK3562: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte; RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte, int4 type must be aligned with 32byte; N limit: RK3566/3568: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte; RK3562: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte; RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte, int4 type must be aligned with 64byte; A shape: M x K normal layout: (M, K) [M1K1, M1K2, ..., M1Kk, M2K1, M2K2, ..., M2Kk, ... MmK1, MmK2, ..., MmKk] for RK3566/3568: int8: native layout: (K / 8, M, 8) [K1M1, K2M1, ..., K8M1, K9M2, K10M2, ..., K16M2, ... K(k-7)Mm, K(k-6)Mm, ..., KkMm] float16: native layout: (K / 4, M, 4) [K1M1, K2M1, ..., K4M1, K9M2, K10M2, ..., K8M2, ... K(k-3)Mm, K(k-2)Mm, ..., KkMm] for RK3562: int8: native layout: (K / 16, M, 16) [K1M1, K2M1, ..., K16M1, K17M2, K18M2, ..., K32M2, ... K(k-15)Mm, K(k-14)Mm, ..., KkMm] float16: native layout: (K / 8, M, 8) [K1M1, K2M1, ..., K8M1, K9M2, K10M2, ..., K16M2, ... K(k-7)Mm, K(k-6)Mm, ..., KkMm] for RK3588/3576: int4: native layout: (K / 32, M, 32) [K1M1, K2M1, ..., K32M1, K33M2, K10M2, ..., K64M2, ... K(k-31)Mm, K(k-30)Mm, ..., KkMm] int8: native layout: (K / 16, M, 16) [K1M1, K2M1, ..., K16M1, K17M2, K18M2, ..., K32M2, ... K(k-15)Mm, K(k-14)Mm, ..., KkMm] float16: native layout: (K / 8, M, 8) [K1M1, K2M1, ..., K8M1, K9M2, K10M2, ..., K16M2, ... K(k-7)Mm, K(k-6)Mm, ..., KkMm] B shape: K x N normal layout: (K, N) [K1N1, K1N2, ..., K1Nn, K2N1, K2N2, ..., K2Nn, ... KkN1, KkN2, ..., KkNn] for RK3566/3568: int8: native layout: (N / 16, K / 32, 16, 32) [K1N1, K2N1, ..., K32N1, K1N2, K2N2, ..., K32N2, ... K1N16, K2N16, ..., K32N16, K33N1, K34N1, ..., K64N1, K33N2, K34N2, ..., K64N2, ... K(k-31)N16, K(k-30)N16, ..., KkN16, K1N17, K2N17, ..., K32N17, K1N18, K2N18, ..., K32N18, ... K(k-31)Nn, K(k-30)Nn, ..., KkNn] float16: native layout: (N / 8, K / 16, 8, 16) [K1N1, K2N1, ..., K16N1, K1N2, K2N2, ..., K16N2, ... K1N8, K2N8, ..., K16N8, K17N1, K18N1, ..., K32N1, K17N2, K18N2, ..., K32N2, ... K(k-15)N8, K(k-30)N8, ..., KkN8, K1N9, K2N9, ..., K16N9, K1N10, K2N10, ..., K16N10, ... K(k-15)Nn, K(k-14)Nn, ..., KkNn] for RK3562: int8: native layout: (N / 16, K / 32, 16, 32) [K1N1, K2N1, ..., K32N1, K1N2, K2N2, ..., K32N2, ... K1N16, K2N16, ..., K32N16, K33N1, K34N1, ..., K64N1, K33N2, K34N2, ..., K64N2, ... K(k-31)N16, K(k-30)N16, ..., KkN16, K1N17, K2N17, ..., K32N17, K1N18, K2N18, ..., K32N18, ... K(k-31)Nn, K(k-30)Nn, ..., KkNn] float16: native layout: (N / 8, K / 32, 8, 32) [K1N1, K2N1, ..., K32N1, K1N2, K2N2, ..., K32N2, ... K1N8, K2N8, ..., K32N8, K33N1, K34N1, ..., K64N1, K33N2, K34N2, ..., K64N2, ... K(k-31)N8, K(k-30)N8, ..., KkN8, K1N9, K2N9, ..., K16N9, K1N10, K2N10, ..., K16N10, ... K(k-31)Nn, K(k-30)Nn, ..., KkNn] for RK3588: when K > 8192, the B data will be split into T segments. int T = std::ceil(K / 8192); For example: normal layout -> native layout K = 20488, N = 4096, T = 3, the data will be split into 3 segments. subN = rknn_matmul_io_attr.B.dims[2]; subK = rknn_matmul_io_attr.B.dims[3]; (8196, 4096) (4096 / subN, 8196 / subK, subN, subK) (K, N) = (20488, 4096) -> (8196, 4096) -> (4096 / subN, 8196 / subK, subN, subK) normal layout (4096, 4096) (4096 / subN, 4096 / subK, subN, subK) T normal layout T native layout It is recommended to use the rknn_B_normal_layout_to_native_layout interface for direct data conversion. for RK3576: when K > 4096, the B data will be split into T segments. int T = std::ceil(K / 4096); For example: normal layout -> native layout K = 10240, N = 2048, T = 3, the data will be split into 3 segments. subN = rknn_matmul_io_attr.B.dims[2]; subK = rknn_matmul_io_attr.B.dims[3]; (4096, 2048) (2048 / subN, 4096 / subK, subN, subK) (K, N) = (10240, 2048) -> (4096, 2048) -> (2048 / subN, 4096 / subK, subN, subK) normal layout (2048, 2048) (2048 / subN, 2048 / subK, subN, subK) T normal layout T native layout It is recommended to use the rknn_B_normal_layout_to_native_layout interface for direct data conversion. for RK3588/3576: int4: native layout: (N / 64, K / 32, 64, 32) [K1N1, K2N1, ..., K32N1, K1N2, K2N2, ..., K32N2, ... K1N64, K2N64, ..., K32N64, K33N1, K34N1, ..., K64N1, K33N2, K34N2, ..., K64N2, ... K(k-31)N64, K(k-30)N64, ..., KkN64, K1N65, K2N65, ..., K32N65, K1N66, K2N66, ..., K32N66, ... K(k-31)Nn, K(k-30)Nn, ..., KkNn] int8: native layout: (N / 32, K / 32, 32, 32) [K1N1, K2N1, ..., K32N1, K1N2, K2N2, ..., K32N2, ... K1N32, K2N32, ..., K32N32, K33N1, K34N1, ..., K64N1, K33N2, K34N2, ..., K64N2, ... K(k-31)N32, K(k-30)N32, ..., KkN32, K1N33, K2N33, ..., K32N33, K1N34, K2N34, ..., K32N34, ... K(k-31)Nn, K(k-30)Nn, ..., KkNn] float16: native layout: (N / 16, K / 32, 16, 32) [K1N1, K2N1, ..., K32N1, K1N2, K2N2, ..., K32N2, ... K1N16, K2N16, ..., K32N16, K33N1, K34N1, ..., K64N1, K33N2, K34N2, ..., K64N2, ... K(k-31)N16, K(k-30)N16, ..., KkN16, K1N17, K2N17, ..., K32N17, K1N18, K2N18, ..., K32N18, ... K(k-31)Nn, K(k-30)Nn, ..., KkNn] C shape: M x N normal layout: (M, N) [M1N1, M1N2, ..., M1Nn, M2N1, M2N2, ..., M2Nn, ... MmN1, MmN2, ..., MmNn] native layout: (N / 4, M, 4) [N1M1, N2M1, ..., N4M1, N5M2, N6M2, ..., N8M2, ... N(n-3)Mm, N(n-2)Mm, ..., NnMm] for RK3588: int4: native layout: (N / 8, M, 8) [N1M1, N2M1, ..., N8M1, N9M2, N10M2, ..., N16M2, ... N(n-7)Mm, N(n-6)Mm, ..., NnMm] */ int rknn_matmul_set_io_mem(rknn_matmul_ctx ctx, rknn_tensor_mem* mem, rknn_matmul_tensor_attr* attr); /* rknn_matmul_set_core_mask set rknn core mask.(only support RK3588 in current) RKNN_NPU_CORE_AUTO: auto mode, default value RKNN_NPU_CORE_0: core 0 mode RKNN_NPU_CORE_1: core 1 mode RKNN_NPU_CORE_2: core 2 mode RKNN_NPU_CORE_0_1: combine core 0/1 mode RKNN_NPU_CORE_0_1_2: combine core 0/1/2 mode input: rknn_matmul_ctx context the handle of context. rknn_core_mask core_mask the core mask. return: int error code. */ int rknn_matmul_set_core_mask(rknn_matmul_ctx context, rknn_core_mask core_mask); /* rknn_matmul_set_quant_params set quant params.(only support matmul type RKNN_INT8_MM_INT8_TO_INT8, RKNN_INT8_MM_INT8_TO_INT32) input: rknn_matmul_ctx context the handle of context. rknn_quant_params params quant params. return: int error code. */ int rknn_matmul_set_quant_params(rknn_matmul_ctx context, rknn_quant_params* params); /* rknn_matmul_get_quant_params get per channel quant params.(only support matmul type RKNN_INT8_MM_INT8_TO_INT32) input: rknn_matmul_ctx context the handle of context. rknn_quant_params params quant params. float scale get scale for user. return: int error code. */ int rknn_matmul_get_quant_params(rknn_matmul_ctx ctx, rknn_quant_params* params, float* scale); /* rknn_matmul_set_dynamic_shape set the matmul input/output shape. matmul will run under current input shape after rknn_matmul_set_dynamic_shape, only support M dynamicly now. input: rknn_matmul_ctx ctx the handle of context. rknn_matmul_shape* shape the M,K,N shape of matmul currently return: int error code. */ int rknn_matmul_set_dynamic_shape(rknn_matmul_ctx ctx, rknn_matmul_shape* shape); /* rknn_matmul_run run the matmul in blocking mode params: rknn_matmul_ctx ctx the handle of context. return: int error code. */ int rknn_matmul_run(rknn_matmul_ctx ctx); /* rknn_matmul_destroy destroy the matmul context params: rknn_matmul_ctx ctx the handle of context. return: int error code. */ int rknn_matmul_destroy(rknn_matmul_ctx ctx); /* rknn_B_normal_layout_to_native_layout change the B normal layout buffer to native layout buffer params: void* B_input B normal layout buffer. void* B_output B native layout buffer. int K K int N N rknn_matmul_info info matmul info return: int error code. */ int rknn_B_normal_layout_to_native_layout(void* B_input, void* B_output, int K, int N, rknn_matmul_info* info); #ifdef __cplusplus } // extern "C" #endif #endif // _RKNN_MATMUL_API_H