import numpy as np import cv2 from rknn.api import RKNN ONNX_MODEL = 'resnet50.onnx' RKNN_MODEL = 'resnet50.rknn' def show_outputs(outputs): output = outputs[0][0] index = sorted(range(len(output)), key=lambda k : output[k], reverse=True) fp = open('./labels.txt', 'r') labels = fp.readlines() top5_str = 'resnet50_sparse_infer\n-----TOP 5-----\n' for i in range(5): value = output[index[i]] if value > 0: topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1]) else: topi = '[ -1]: 0.0\n' top5_str += topi print(top5_str.strip()) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 57.12, 57.375], target_platform='rk3576', sparse_infer=True) print('done') # Load model print('--> Loading model') ret = rknn.load_onnx(model=ONNX_MODEL) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./datasets.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn(RKNN_MODEL) if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_224x224.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.expand_dims(img, 0) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime(target='rk3576') if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img], data_format=['nhwc']) x = outputs[0] output = np.exp(x)/np.sum(np.exp(x)) outputs = [output] show_outputs(outputs) print('done') rknn.release()