import numpy as np import cv2 from rknn.api import RKNN def show_outputs(outputs): output_ = outputs[0].reshape((-1, 1000)) fp = open('./labels.txt', 'r') labels = fp.readlines() for batch, output in enumerate(output_): index = sorted(range(len(output)), key=lambda k : output[k], reverse=True) top5_str = '----- Batch {}: TOP 5 -----\n'.format(batch) for i in range(5): value = output[index[i]] if value > 0: topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1]) else: topi = '[ -1]: 0.0\n' top5_str += topi print(top5_str.strip()) def show_perfs(perfs): perfs = 'perfs: {}\n'.format(outputs) print(perfs) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566') print('done') # Load model (from https://github.com/shicai/MobileNet-Caffe) print('--> Loading model') ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt', blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel') if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt', rknn_batch_size=4) if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./mobilenet_v2.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img_0 = cv2.imread('./dog_224x224.jpg') img_0 = np.expand_dims(img_0, 0) img_1 = cv2.imread('./goldfish_224x224.jpg') img_1 = np.expand_dims(img_1, 0) img_2 = cv2.imread('./space_shuttle_224.jpg') img_2 = np.expand_dims(img_2, 0) img = np.concatenate((img_0, img_1, img_2, img_0), axis=0) # the inputs data need to be merged together using np.concatenate. # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img], data_format=['nhwc']) np.save('./functions_multi_batch_0.npy', outputs[0]) show_outputs(outputs) print('done') rknn.release()