from rknn.api import RKNN # Test on the original onnx model rknn = RKNN(verbose=True) rknn.config(target_platform='rk3588') rknn.load_onnx("./concat_block.onnx") rknn.build(do_quantization=True, dataset='./dataset.txt') rknn.export_rknn('./concat_block.rknn') # use rknn.utils.onnx_edit to edit the onnx model from rknn.utils import onnx_edit ret = onnx_edit(model = './concat_block.onnx', export_path = './concat_block_edited.onnx', inputs_transform = { 'k_cache.1': 'a,b,c,d->1,ad,b,c'}, outputs_transform = {'k_cache': 'a,b,c,d->1,ab,c,d'}, dataset = './dataset.txt' ) # Test on the edited onnx model rknn = RKNN(verbose=True) rknn.config(target_platform='rk3588') rknn.load_onnx("./concat_block_edited.onnx") rknn.build(do_quantization=True, dataset='./dataset_for_concat_block_edited.txt') rknn.export_rknn('./concat_block_edited.rknn')