import numpy as np import cv2 from rknn.api import RKNN def show_outputs(outputs): output = outputs[0][0] index = sorted(range(len(output)), key=lambda k : output[k], reverse=True) fp = open('./labels.txt', 'r') labels = fp.readlines() top5_str = 'mobilenet_v1\n-----TOP 5-----\n' for i in range(5): value = output[index[i]] if value > 0: topi = '[{:>4d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1]) else: topi = '[ -1]: 0.0\n' top5_str += topi print(top5_str.strip()) def softmax(outputs): outputs[0] = np.exp(outputs[0])/np.sum(np.exp(outputs[0])) return outputs if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], target_platform='rk3566', quantized_method='channel', quantized_algorithm='mmse') print('done') # Load model (from https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md) print('--> Loading model') ret = rknn.load_tensorflow(tf_pb='mobilenet_v1_1.0_224_frozen.pb', inputs=['input'], input_size_list=[[1, 224, 224, 3]], outputs=['MobilenetV1/Logits/SpatialSqueeze']) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Accuracy analysis print('--> Accuracy analysis') ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None) if ret != 0: print('Accuracy analysis failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_224x224.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.expand_dims(img, 0) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img], data_format=['nhwc']) np.save('./functions_quantize_algorithm_mmse_0.npy', outputs[0]) show_outputs(softmax(outputs)) print('done') rknn.release()