ctranslate2-4you
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,119 @@
|
|
1 |
---
|
2 |
base_model:
|
3 |
- mistralai/Mistral-Small-Instruct-2409
|
4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
base_model:
|
3 |
- mistralai/Mistral-Small-Instruct-2409
|
4 |
+
---
|
5 |
+
|
6 |
+
# Mistral-Small-Instruct CTranslate2 Model
|
7 |
+
|
8 |
+
This repository contains a CTranslate2 version of the [Mistral-Small-Instruct model](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409). The conversion process involved AWQ quantization followed by CTranslate2 format conversion.
|
9 |
+
|
10 |
+
## Quantization Parameters
|
11 |
+
|
12 |
+
The following AWQ parameters were used:
|
13 |
+
```zero_point=true```
|
14 |
+
```q_group_size=128```
|
15 |
+
```w_bit=4```
|
16 |
+
```version=gemv```
|
17 |
+
|
18 |
+
## Quantization Process
|
19 |
+
|
20 |
+
The quantization was performed using the [AutoAWQ library](https://casper-hansen.github.io/AutoAWQ/examples/). AutoAWQ supports two quantization approaches:
|
21 |
+
|
22 |
+
1. **Without calibration data**:
|
23 |
+
- Quick process (~few minutes)
|
24 |
+
- Uses standard quantization schema
|
25 |
+
- Suitable for general use cases
|
26 |
+
|
27 |
+
2. **With calibration data**:
|
28 |
+
- Longer process (3-4 hours on RTX 4090)
|
29 |
+
- Preserves full precision for task-specific weights
|
30 |
+
- Slightly better performance for targeted tasks
|
31 |
+
|
32 |
+
## Calibration Details
|
33 |
+
|
34 |
+
This model was quantized with calibration data. Specifically, the [cosmopedia-100k](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia-100k) dataset was used, which is good for overall QA and instruction-following.
|
35 |
+
|
36 |
+
Key parameters:
|
37 |
+
- `max_calib_seq_len`: 8192 (enables long-form responses)
|
38 |
+
- `text_token_length`: 2048 (minimum input token length during quantization)
|
39 |
+
|
40 |
+
While these parameters don't fundamentally alter the model's architecture, they fine-tune its behavior for specific input-output length patterns and topic domains.
|
41 |
+
|
42 |
+
## Requirements
|
43 |
+
|
44 |
+
```torch 2.2.2```
|
45 |
+
```ctranslate2 4.4.0```
|
46 |
+
- NOTE: The soon-to-be-released ```ctranslate2 4.5.0``` will support ```torch``` greater than version 2.2.2. These instructions will be updated when that occurs.
|
47 |
+
|
48 |
+
## Sample Script
|
49 |
+
|
50 |
+
```
|
51 |
+
import os
|
52 |
+
import sys
|
53 |
+
import ctranslate2
|
54 |
+
import gc
|
55 |
+
import torch
|
56 |
+
from transformers import AutoTokenizer
|
57 |
+
|
58 |
+
system_message = "You are a helpful person who answers questions."
|
59 |
+
user_message = "Hello, how are you today? I'd like you to write me a funny poem that is a parody of Milton's Paradise Lost if you are familiar with that famous epic poem?"
|
60 |
+
|
61 |
+
model_dir = r"D:\Scripts\bench_chat\models\mistralai--Mistral-Small-Instruct-2409-AWQ-ct2-awq" # uses ~13.8 GB
|
62 |
+
|
63 |
+
|
64 |
+
def build_prompt_mistral_small():
|
65 |
+
prompt = f"""<s>
|
66 |
+
[INST] {system_message}
|
67 |
+
|
68 |
+
{user_message}[/INST]"""
|
69 |
+
|
70 |
+
return prompt
|
71 |
+
|
72 |
+
|
73 |
+
def main():
|
74 |
+
model_name = os.path.basename(model_dir)
|
75 |
+
|
76 |
+
print(f"\033[32mLoading the model: {model_name}...\033[0m")
|
77 |
+
|
78 |
+
intra_threads = max(os.cpu_count() - 4, 4)
|
79 |
+
|
80 |
+
generator = ctranslate2.Generator(
|
81 |
+
model_dir,
|
82 |
+
device="cuda",
|
83 |
+
# compute_type="int8_bfloat16", # NOTE...YOU DO NOT USE THIS AT ALL WHEN USING AWQ/CTRANSLATE2 MODELS
|
84 |
+
intra_threads=intra_threads
|
85 |
+
)
|
86 |
+
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, add_prefix_space=None)
|
88 |
+
|
89 |
+
prompt = build_prompt_mistral_small()
|
90 |
+
|
91 |
+
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
|
92 |
+
|
93 |
+
print(f"\nRun 1 (Beam Size: {beam_size}):")
|
94 |
+
|
95 |
+
results_batch = generator.generate_batch(
|
96 |
+
[tokens],
|
97 |
+
include_prompt_in_result=False,
|
98 |
+
max_batch_size=4096,
|
99 |
+
batch_type="tokens",
|
100 |
+
beam_size=1,
|
101 |
+
num_hypotheses=1,
|
102 |
+
max_length=512,
|
103 |
+
sampling_temperature=0.0,
|
104 |
+
)
|
105 |
+
|
106 |
+
output = tokenizer.decode(results_batch[0].sequences_ids[0])
|
107 |
+
|
108 |
+
print("\nGenerated response:")
|
109 |
+
print(output)
|
110 |
+
|
111 |
+
del generator
|
112 |
+
del tokenizer
|
113 |
+
torch.cuda.empty_cache()
|
114 |
+
gc.collect()
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
main()
|
119 |
+
```
|